代数结构:5、格与布尔代数

16.1 偏序与格

偏序集:设P是集合,P上的二元关系“≤”满足以下三个条件,则称“≤”是P上的偏序关系(或部分序关系)

(1)自反性:a≤a,∀a∈P;

(2)反对称性:∀a,b∈P,若a≤b且b≤a,则a=b;

(3)传递性:∀a,b,c∈P,若a≤b且b≤c,则a≤c;

定义1 格

​ 设 ( L , ⪯ ) (L,\preceq) (L,)为偏序集,如果任意的 a , b ∈ L a,b\in L a,bL有最小上界与最大下界时,称 L L L,以 a ∨ b = l u b ( a , b ) a\lor b = lub(a,b) ab=lub(a,b)(least upper bond)表示 a , b a,b a,b的最小上界, a ∧ b = g l b ( a , b ) a\land b =glb(a,b) ab=glb(a,b)(greatest lower bond)表示 a , b a,b a,b的最大下界。

定义2 覆盖

( L , ⪯ ) (L,\preceq) (L,)为格,如果 a ⪯ b , a ≠ b a\preceq b,a\neq b ab,a=b(记为 a ≺ b a\prec b ab),且不存在 u ∈ L − { a , b } u\in L-\{a,b\} uL{a,b},使 a ≺ u ≺ b a\prec u \prec b aub,则称 a a a覆盖 b b b.

:若 a ≺ b a\prec b ab,如果有 c 1 , ⋯   , c k ∈ L , k ≥ 1 c_1,\cdots,c_k \in L,k\ge 1 c1,,ckL,k1 ,使 c i + 1 c_{i+1} ci+1覆盖 c i ( u i = 1 , 2 , ⋯   , k − 1 ) c_i(ui=1,2,\cdots,k-1) ci(ui=1,2,,k1),且
a = c 1 ≺ c 2 ≺ ⋯ ≺ c k = b a=c_1\prec c_2\prec\cdots\prec c_k = b a=c1c2ck=b
​ 则称 c 1 , ⋯   , c k c_1,\cdots,c_k c1,,ck为连接 a , b a,b a,b的链,如果L中的任意两个元素总有连接它们的链,则称 L L L是离散的。

​ 有限的离散全序集的哈斯图由一条链组成

定义3 完全格

( L ; ≺ ) (L;\prec) (L;)为偏序集,当 ∀ A ⊆ L \forall A\subseteq L AL有最大下界、最小上界时, L L L显然是格,称为完全格 L L L自身的最小上界是整个格 L L L的最大元,记为1; L L L自身的最小下界为整个格 L L L的最小元记为0.子集 A A A可以是有限的,也可以是无限的。

定理1 格的关系运算

( L , ⪯ ) (L,\preceq) (L,)为格,则对任意 a , b ∈ L a,b\in L a,bL

  1. a ≺ a ∨ b , a ∧ b ≺ a a\prec a\lor b ,a\land b \prec a aab,aba
  2. a ⪯ b ⟺ a ∨ b = b a\preceq b \Longleftrightarrow a\lor b =b abab=b
  3. a ⪯ b ⟺ a ∧ b = a a\preceq b \Longleftrightarrow a\land b = a abab=a

画个哈斯图是显然的,或者注意到按照定义,我们有 a ∨ b = l u b ( a , b ) , a ∧ b = g l b ( a , b ) a\lor b=lub(a,b),a\land b = glb(a,b) ab=lub(a,b),ab=glb(a,b),且若 a ⪯ b a\preceq b ab,则 l u b ( a , b ) = b lub(a,b)=b lub(a,b)=b就容易得到了

定理2 格的运算律

  1. 幂等律: a ∧ a = a , a ∨ a = a a\land a = a, a\lor a = a aa=a,aa=a
  2. 交换律: a ∨ b = b ∨ a , a ∧ b = b ∧ a a\lor b=b\lor a,a\land b=b\land a ab=ba,ab=ba
  3. 结合律: a ∨ ( b ∨ c ) = ( a ∨ b ) ∨ c , a ∧ ( b ∧ c ) = ( a ∧ b ) ∧ c a\lor(b\lor c)=(a\lor b )\lor c,a\land(b\land c)=(a\land b)\land c a(bc)=(ab)c,a(bc)=(ab)c
  4. 吸收律: a ∨ ( a ∧ b ) = a , a ∧ ( a ∨ b ) = a a\lor(a\land b)=a,a\land(a\lor b)= a a(ab)=a,a(ab)=a

P211

那么我们可以将 [ L ; ∧ , ∨ ] [L;\land,\lor] [L;,]视为代数系统

引理 1 代数系统L中的等价关系

​ 在 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]中二元关系 ∨ , ∧ \lor,\land ,满足上述4条运算律,则 ∀ a , b ∈ L , a ∧ b = a ⟺ a ∨ b = b \forall a,b\in L ,a\land b= a\Longleftrightarrow a\lor b=b a,bL,ab=aab=b

( a ∧ b ) = a ⇒ a ∨ b = ( a ∧ b ) ∨ b = b (a\land b )=a \Rightarrow a\lor b =(a\land b )\lor b =b (ab)=aab=(ab)b=b(最后一步是吸收律)

a ∨ b = b ⇒ a ∧ b = a ∧ ( a ∨ b ) = a a\lor b =b\Rightarrow a\land b = a\land(a\lor b )=a ab=bab=a(ab)=a

引理2 通过L构造偏序集

​ 在 [ L ; ∧ , ∨ ] [L;\land,\lor] [L;,]中, ∧ , ∨ \land,\lor ,满足4条运算规律,定义关系 ⪯ \preceq 如下: ∀ a , b ∈ L , a ⪯ b \forall a,b \in L ,a\preceq b a,bL,ab,当且仅当 a ∨ b = b a\lor b =b ab=b.则 ( L ; ⪯ ) (L;\preceq) (L;)为偏序集

证明自反性,反对称性,传递性 P211

定理3 引理2中的偏序集是格

证明 a ∨ b = l u b ( a , b ) , a ∧ b = g l b ( a , b ) a\lor b = lub(a,b),a\land b = glb(a,b) ab=lub(a,b),ab=glb(a,b) P211

定义4 格的另一种定义方式

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]是一代数系统, ∨ , ∧ \lor,\land ,是定义在 L L L上的二元运算,当其满足 L 1 L_1 L1 L 4 L_4 L4时,称 L L L为格,并称 ∧ \land 为积(交), ∨ \lor 为和(或并)

定理4 保序性

​ 格 [ L ; ∨ , ∧ ] , ∀ a , b , c ∈ L [L;\lor,\land],\forall a,b,c\in L [L;,],a,b,cL,当 b ⪯ c b\preceq c bc时有 a ∧ b ⪯ a ∧ c a\land b \preceq a\land c abac a ∨ b ⪯ a ∨ c a\lor b\preceq a\lor c abac

定义5 子格

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]为格, T ≠ ∅ , T ⊆ L T\neq\varnothing,T\subseteq L T=,TL, T T T关于 ∨ , ∧ \lor,\land ,封闭(即 a , b ∈ T , a ∨ b ∈ T , a ∧ b ∈ T a,b\in T,a\lor b \in T,a\land b \in T a,bT,abT,abT)时,称 T T T L L L的子格

​ 注意,当 T T T L L L的子格时, T T T一定是格,但当 T ⊆ L T\subseteq L TL, T T T关于 L L L中的偏序关系 ⪯ \preceq 为格时, T T T不一定是 L L L的子格,因为 T T T中的运算关系可能不同

​ 例如,一个群 G G G的子群全体 S ( G ) S(G) S(G)关于 ⊆ \subseteq 关系所构成的格不是 G G G的幂集关于 ⊆ \subseteq 关系所构成的格的子格,因为子群的并不一定是子群

定义6 格的同态与同构

​ 设 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,] [ S ; + , ∘ ] [S;+,\circ] [S;+,]为两个格,如果存在映射 φ : L → S , ∀ a , b ∈ L \varphi:L\rightarrow S,\forall a,b\in L φ:LSa,bL,有
φ ( a ∧ b ) = φ ( a ) ∘ φ ( b ) φ ( a ∨ b ) = φ ( a ) + φ ( b ) \varphi(a\land b )=\varphi(a)\circ\varphi(b)\\ \varphi(a\lor b)=\varphi(a)+\varphi(b) φ(ab)=φ(a)φ(b)φ(ab)=φ(a)+φ(b)
​ 则称 φ \varphi φ L L L S S S的同态映射,当 φ ( L ) = S \varphi(L)=S φ(L)=S时(满射),则说两个格同态,当 φ \varphi φ是一一对应(双射),说同构。如果 L = S L=S L=S,则称为自同态和自同构。

定理 5 同态映射是保序的

​ 若 φ \varphi φ是格 L , S L,S L,S间的同态映射,则 φ \varphi φ是同态映射,即 ∀ a , b ∈ L \forall a,b\in L a,bL,若 a ⪯ b a\preceq b ab,则 φ ( a ) ⪯ φ ( b ) \varphi(a)\preceq\varphi(b) φ(a)φ(b)注意不是当且仅当

定理6 同构映射的保序性

a ⪯ b ⟺ φ ( a ) ⪯ φ ( b ) a\preceq b \Longleftrightarrow \varphi(a)\preceq\varphi(b) abφ(a)φ(b)

定理7 对偶原理

  1. P P P是对任意偏序集都为真的一个命题, P ′ P' P是将 P P P中所有 ⪯ , ⪰ \preceq,\succeq ,对换得到的对偶命题,则 P ′ P' P对任意偏序集也为真
  2. P P P是从格 [ B ; ∨ , ∧ ] [B;\lor,\land] [B;,]推出的命题, P ′ P' P是将 P P P ∨ \lor ∧ \land 对换得到的对偶命题,则 P ′ P' P对格 [ B ; ∧ , ∨ ] [B;\land,\lor] [B;,]也为真

偏序反转后,自然从P得到了P‘

16.2 有补格及分配格

定义7 有界格

​ 一个具有最大元1和最小元0的格 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]称为有界格

定理8 最大元和最小元的性质

​ 有界格中, ∀ a ∈ L : a ∨ 1 = 1 , a ∧ 0 = 0 , a ∧ 1 = a , a ∨ 0 = a \forall a\in L:a\lor 1 =1,a\land 0 =0,a\land 1 =a,a\lor 0 =a aL:a1=1,a0=0,a1=a,a0=a

定义8 有补格

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]为有界格,$\forall a \in L , 若 ,若 ,\exist b\in L , 有 ,有 ,a\lor b =1,a\land b =0 ,则称 ,则称 ,则称b 为 为 a 的 ‘ 补元 ‘ , 记 的`补元`,记 补元,b 为 为 a’ . 若 .若 .L 中的每个元有补元,称 中的每个元有补元,称 中的每个元有补元,称L$为有补格

我们可以发现,对任意格成立分配不等式,即格 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]中任意 a , b , c ∈ L a,b,c\in L a,b,cL,有:

  1. a ∨ ( b ∧ c ) ⪯ ( a ∨ b ) ∧ ( a ∨ c ) a\lor (b\land c)\preceq (a\lor b)\land(a\lor c) a(bc)(ab)(ac)
  2. KaTeX parse error: Undefined control sequence: \and at position 34: …and c)\preceq a\̲a̲n̲d̲(b\lor c)

怎么说了,这个不等关系很容易记反,就画哈斯图吧

定义9 分配格

我们可以发现,对任意格成立分配不等式,即格 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]中任意 a , b , c ∈ L a,b,c\in L a,b,cL,有:

  1. a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) a\lor (b\land c)= (a\lor b)\land(a\lor c) a(bc)=(ab)(ac)
  2. KaTeX parse error: Undefined control sequence: \and at position 28: …or(a\land c)= a\̲a̲n̲d̲(b\lor c)

则称格L为分配格

两个典型的非分配格

在这里插入图片描述

​ 只要哈斯图中含有这种子结构,就可以判断它不是分配格

定理9 分配格的判断

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]为任意格,则下述条件等价

  1. ∀ a , b , c ∈ L , a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) \forall a,b,c\in L,a\land(b\lor c)=(a\land b)\lor(a\land c) a,b,cL,a(bc)=(ab)(ac)
  2. ∀ a , b , c ∈ L , a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) \forall a,b,c\in L,a\lor(b\land c)=(a\lor b)\land(a\lor c) a,b,cL,a(bc)=(ab)(ac)
  3. ∀ a , b , c ∈ L , ( a ∧ b ) ∨ ( b ∧ c ) ∨ ( c ∧ a ) = ( a ∨ b ) ∧ ( b ∨ c ) ∧ ( c ∨ a ) \forall a,b,c\in L,(a\land b)\lor (b\land c)\lor(c\land a)=(a\lor b)\land(b\lor c)\land(c\lor a) a,b,cL,(ab)(bc)(ca)=(ab)(bc)(ca)
  4. 不含 M 5 M_5 M5 N 5 N_5 N5同构的子格

16.3 布尔格与布尔代数

定义10 布尔格

​ 有补分配格即为布尔格,习惯上写成 ( B , ⪯ ) (B,\preceq) (B,),又在前文已证明了格的代数系统的等价定义,所以布尔格也可以定义为 [ B ; ∨ , ∧ , ′ ] [B;\lor,\land,'] [B;,,],称为布尔代数

定理10 布尔代数的一些性质

  1. a a a的补元唯一
  2. ( a ∧ b ) ′ = a ′ ∨ b ′ , ( a ∨ b ) ′ = a ′ ∧ b ′ (a\land b)'=a'\lor b',(a\lor b)'=a'\land b' (ab)=ab,(ab)=ab
  3. ( a ∧ b ) = 0 ⇔ a ⪯ b ′ (a\land b)=0\Leftrightarrow a\preceq b' (ab)=0ab

证明:

1.分配: a ′ = a ′ ∨ 0 = a ′ ∨ ( a ∧ a ′ ′ ) = ( a ′ ∨ a ) ∧ ( a ′ ∨ a ′ ′ ) = 1 ∧ ( a ′ ∨ a ′ ′ ) = a ′ ∨ a ′ ′ a'=a'\lor 0 =a'\lor(a\land a'')=(a'\lor a)\land(a'\lor a'')=1\land(a'\lor a'')=a'\lor a'' a=a0=a(aa′′)=(aa)(aa′′)=1(aa′′)=aa′′,同理 a ′ ′ = a ′ ′ ∨ a ′ a''=a''\lor a' a′′=a′′a

2. ( a ∧ b ) ∧ ( a ′ ∨ b ′ ) = ( ( a ∧ b ) ∧ a ′ ) ∨ ( ( a ∧ b ) ∧ b ′ ) = ( ( a ∧ a ′ ) ∧ b ) ∨ ( ( b ′ ∧ b ) ∧ a ) = 0 (a\land b)\land (a'\lor b')=((a\land b)\land a')\lor((a\land b)\land b')=((a\land a')\land b)\lor((b'\land b)\land a)=0 (ab)(ab)=((ab)a)((ab)b)=((aa)b)((bb)a)=0,同理可证两个 ∨ \lor 为1

3.则 ( a ∧ b ) ′ = ( a ′ ∨ b ′ ) = 1 , a = a ∧ 1 = a ∧ ( a ′ ∨ b ′ ) = ( a ∧ a ′ ) ∨ ( a ∧ b ′ ) = a ∧ b ′ (a\land b)'=(a'\lor b')=1,a=a\land 1=a\land(a'\lor b')=(a\land a')\lor(a\land b')=a \land b' (ab)=(ab)=1,a=a1=a(ab)=(aa)(ab)=ab,反正是很容易得

运算性质

​ P217

定理11 布尔代数的判定

B B B至少包含两个元素, ∨ , ∧ \lor,\land , B B B上的两个运算, ′ ' B B B上的一元运算,如对任何 a , b , c ∈ B a,b,c\in B a,b,cB满足:
( H 1 )   a ∧ b = b ∧ a , a ∨ b = b ∨ a ( 交换 ) ( H 2 )   a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) , a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) ( 分配 ) ( H 3 )  在 B 中存在零元 0 : a ∧ 0 = a , a ∨ 0 = a , 存在单位元 1 : a ∧ 1 = a , a ∨ 1 = 1 ( H 4 )   a ′ ∈ B : a ∧ a ′ = 0 , a ∨ a ′ = 1 ( 有补格 ) (H_1)\ a\land b=b\land a,a\lor b = b\lor a (交换)\\ (H_2)\ a\land(b\lor c)=(a\land b)\lor(a\land c),a\lor(b\land c)=(a\lor b)\land(a\lor c)(分配)\\ (H_3)\ 在B中存在零元0:a\land 0 =a,a\lor 0= a,存在单位元1:a\land 1=a,a\lor 1= 1\\ (H_4)\ a'\in B:a\land a' =0,a\lor a' =1 (有补格) (H1) ab=ba,ab=ba(交换)(H2) a(bc)=(ab)(ac),a(bc)=(ab)(ac)(分配)(H3) B中存在零元0:a0=a,a0=a,存在单位元1:a1=a,a1=1(H4) aB:aa=0,aa=1(有补格)
​ 则 [ B ; ∨ , ∧ , ′ ] [B;\lor,\land,'] [B;,,]为布尔代数

证明是复杂且乏味的(P 218)

一个重要结论:任意一个有限布尔代数必为 2 n ( n ≥ 1 ) 2^n(n\ge1) 2n(n1)元的;且对任一自然数 n ≥ 1 n\ge 1 n1,必定能找到一个布尔代数 B B B,使 ∣ B ∣ = 2 n |B|=2^n B=2n,任意一个 2 n 2^n 2n元的布尔代数都同构于 [ B ; ∨ , ∧ , ′ ] [B;\lor,\land,'] [B;,,]

布尔环

​ 定义 [ B ; ∨ , ∧ , ′ ] [B;\lor,\land,'] [B;,,] B B B中的二元运算 + , ⋅ +,\cdot +,如下: ∀ a , b ∈ B \forall a,b\in B a,bB
a + b = ( a ∧ b ′ ) ∨ ( a ′ ∧ b ) a ⋅ b = a ∧ b a+b = (a\land b')\lor(a'\land b)\\ a\cdot b=a\land b a+b=(ab)(ab)ab=ab
​ 容易验证这样定义的 [ B ; + , ⋅ ] [B;+,\cdot] [B;+,]时可交换的有单位元环

定义11 布尔环

​ 如上定义的 [ B ; + , ⋅ ] [B;+,\cdot] [B;+,]是环,称为布尔环

定理12 幂等的性质

​ 设 [ B ; + , ⋅ ] [B;+,\cdot] [B;+,]为具有幂等律的环( a 2 = a a^2 =a a2=a),则 ∀ a ∈ B , 2 a = 0 \forall a\in B,2 a =0 aB,2a=0

​ 不难证明,如果一个有单位元的环 [ B ; + , ⋅ ] [B;+,\cdot] [B;+,],若它每个元素都是幂等元,且定义 ∀ a , b ∈ B , a ′ = 1 − a , a ∨ b = a + b − a ⋅ b , a ∧ b = a ⋅ b \forall a,b\in B,a'=1-a,a\lor b=a+b-a\cdot b,a\land b =a\cdot b a,bB,a=1a,ab=a+bab,ab=ab,就可以得到一个布尔代数。

定义12 布尔环的另一种定义

​ 一个带单位元的环,如果它的每个元素都是幂等的,则称该环为布尔环

  • 8
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值