HashMap 应该是大家使用最多的Map下的具体实现类, 但他有一个缺点就是 线程不安全的,如果我们需要在多线程的情况下使用HashMap就需要自己加锁,效率不好.而如果使用HashTable ,因为HashTable是 表锁,性能极低.
Java为了解决这种情况,在JUC中为我们提供了ConcurrentHashMap. 在JDK1.8以前,ConcurrentHashMap 底层数据结构与对应的HashMap结构一样,使用的是 数组+链表.而ConcurrentHashMap使用的是分段锁.每一段table数组分段锁起来,这样在并发线程不在一段的情况下,就可以没有所竞争提高效率…
而在JDK1.8的时候,HashMap和ConcurrentHashMap 做出了非常大也是非常牛逼的调整,极大地增加了性能.
1.8的HashMap 底层数据结构改为了, 数组+链表+红黑树的结构. 当我们要存入数据的时候,要先经过寻址算法
key.hash & (table.leng - 1) //table 是HashMap的数组的长度.
这个的结果其实相当于 key.hash % table.leng. 这是考虑到了效率的问题,因为我们的计算机是无法识别我们的取模运算的,而位运算不同,可以直接计算,所以使用位运算来提高 运算效率.
而通过寻址算法之后,随着数据量的增加, hash碰撞就是不可避免的一个问题.
一旦发生hash碰撞,那么我们就将发生碰撞的桶位的结构改变成链表.
当链表长度>=8.切table长度>=64的时候,这时候我们就会将满足阈值的链表进行树化.
ConcurrentHashMap的的数据结构与HashMap基本类似. JDK1.8的ConcurrentHashMap 为了线程安全 ,采用的是synchronized和CAS来解决的.同时用到了LongAdder类中的很多方法和思想.
写入操作
下面就以 ConcurrentHashMap的put() 方法来作为切入点,聊一下ConcurrentHashMap;
源码如下:
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
//首先判断放入的key和value 不能为空
if (key == null || value == null) throw new NullPointerException();
//hash 是 key 的hashcode经过扰动函数之后的hash值.
//扰动函数的话就是 将 h^(h>>>16)&HASH_BITS h^(h>>>16)是为了让 hash的高16位也参与到寻址之中
//而 &HASH_BITS 就是将 hash值去除 高位 符号位.变为正数
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//情况一: 具体解析在下面
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//情况二:
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//情况三:
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
//情况四:
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
我们将数据put入ConcurrentHashMap 主要有以下几种情况:
情况一:
放入的时候,table还没有进行初始化.(ConCurrentHashMap 和HashMap 的table数组都是懒加载,只有当第一次存入数据的时候才会进行初始化)…这时候就会先进行初始化.因为 ConCurrentHashMap 是多线程情况下使用的,所以初始化情况下也可能会有多个线程,这时候就会采用CAS方式 , 通过sizeCTL这个标识,来确保只有一个线程进入初始化.其他未进入初始化的线程被迫自旋,当扩容完毕后,退出自旋,再去进行本来要进行的操作. 而此时,sizeCTL 变为了 下次要扩容时的 扩容阈值.
源码如下:
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
//判断线程是否进入扩容
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
//重点关注这个地方:
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
情况二:
table数组已经初始化,但桶位头节点没有数据,直接put进去…这里也是采用的CAS方法,确保只能有一个线程放入头节点.
情况三:
table数组已经初始化,但是,key找到的桶位已经被表示未MOVED, 此时是因为有其他线程触发了 table扩容,造成的数据迁移,这时候就会先去帮着table扩容, 经过一些列操作之后回到现在的方法,然后进入情况四.
情况四:
table数组已经初始化,桶位头节点也有了数据,这时,为了保证数据安全… 对头节点进行加锁,synchronizd(头节点), 保证只有一个线程可以操作次头节点,而且其他线程在写操作时,如果不是操作此头节点, 也不会发生线程冲突.从而较分段锁 更提高了效率.
写入操作又分为了两种情况:
- 要写入的是链表 : 遍历现在已经存在的节点,找到next为null 的节点,插入其后. 然后判断是否达到树化阈值 .从而进行树化. 而这里也有一个与HashMap 不同的地方,就是 TreeBin 节点不只是维护红黑树,而且还维护了一个TreeNode节点组成的双向链表.
- 要写入的是红黑树 : 按照红黑树出入方法插入到相应位置.
读取操作
而在进行写操作的时候,同时还会有读操作进入当前map进行操作.
这个时候 如果没有发生线程冲突,也就是 读线程和写线程操作的不是同一头节点,那么将会相安无事.
如果操作的是同一头节点的话.
这个时候,如果要读取的节点和写入的节点不是一个的话,.那么 直接在双线链表中读取数据,如果是同一个节点的话,
那么 通过CAS 加 锁标识 来让 写操作进入挂起状态,等最后一个读操作结束操作的时候,唤起写操作重新进入写入操作.(此时的写入操作是阻塞在 重新整理平衡树的 操作之前,而放入数据已经放入成功,所以也不形象读取这个放入的数据)
扩容机制
ConcurrentHashMap 的扩容因子与HashMap不同 ,是被final关键字修饰的, 因此是不可改变的.,
/**
* The load factor for this table. Overrides of this value in
* constructors affect only the initial table capacity. The
* actual floating point value isn't normally used -- it is
* simpler to use expressions such as {@code n - (n >>> 2)} for
* the associated resizing threshold.
*/
private static final float LOAD_FACTOR = 0.75f;
而他扩容也是像HashMap一样, 容量翻倍,. 且table长度必须是2的次幂.
多线程在扩容的情况下, ConcurrentHashMap 是通过给每一个参与到扩容的线程分配一个步长的table 进行扩容,有点类似1.7中的ConcurrentHashMap的分段上锁,而数据迁移 也是像HashMap 一样, 通过重新 计算寻址,来将数据分为高位和低分 分开存放到相应的位置.
值的一提的地方就是.在每次putVal() 方法之后,都会进入addCount()方法,来检测是否需要进行扩容.而在这个方法中,使用到了LongAdder,
- 我准备过两天写这个类,到时候连个链接过去,
源码如下:
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
//进入到扩容~
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
//条件一:(sc >>> RESIZE_STAMP_SHIFT) != rs
// true->说明当前线程获取到的扩容唯一标识戳 非 本批次扩容
// false->说明当前线程获取到的扩容唯一标识戳 是 本批次扩容
//条件二: JDK1.8 中有bug jira已经提出来了 其实想表达的是 = sc == (rs << 16 ) + 1
// true-> 表示扩容完毕,当前线程不需要再参与进来了
// false->扩容还在进行中,当前线程可以参与
//条件三:JDK1.8 中有bug jira已经提出来了 其实想表达的是 = sc == (rs<<16) + MAX_RESIZERS
// true-> 表示当前参与并发扩容的线程达到了最大值 65535 - 1
// false->表示当前线程可以参与进来
//条件四:(nt = nextTable) == null
// true->表示本次扩容结束
// false->扩容正在进行中
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
首先.,判断一下 Longadd 中的 cells 数组是否创建,也就是说 是否发生了线程竞争,如果竞争的话,就创建cells数组,然后进行数据叠加,到s中,也就是 table的 桶位个数
然后 记数完毕之后,进入扩容阶段:
用 s >= (long)(sc = sizeCtl) 这个条件来限制是否进入扩容 ,之前说过, 如果 table进行初始化了,那么sizeCtl存储的就是下次扩容的阈值, 如果s>= 阈值了,那么就要开始扩容了, rs 是记录的扩容标识戳,用来判断 不同线程扩容的是否是同一次扩容操作.
然后通过两个CAS操作,来限制 触发扩容线程和 协助扩容线程 去进行扩容操作.
以上.