Day8 Nim游戏

Problem describe:
你和你的朋友,两个人一起玩 Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。你作为先手。
你们是聪明人,每一步都是最优解。 编写一个函数,来判断你是否可以在给定石头数量的情况下赢得游戏。
解答:在1-3块石头的时候,先手的肯定是获胜的,而到了4块石头的时候,无论你拿到几块石头都是会输的,所以你的对手想赢的话就只要让石头变成4块就可以了,那么这样的话想赢就得避免石头变成4块,在5,6,7的情况下,你都可以避免对手将其变成4块,而8块的情况下,无论你怎么拿都无法避免对手将石头变成4块,所以我们还应该避免石头变成8块的情况,以此类推得到只要是4的倍数我们就应该避免,所以想要赢的话就保证取石头的时候石头数量不是4的倍数。依此思路来看的话

class Solution {
public:
    bool canWinNim(int n) {
        return (n%4!=0);
    }
};

只要石头数量不是4的倍数,那你就可以赢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值