- lower()
df['name'].str.lower() #str是一个accessor,取到name列的每个元素并将他们变为小写形式
可以用apply()函数代替,你可以尝试写一写。
- 结合使用
df['name'].str.split(',').str.get(0) #取到name列的每个元素并使用,分割,取到第一个元素
- contain()
filt=df['name‘].str.contains('Countess') #对name列的每个元素判断其是否包含Countess字符串,并返回TRUE FALSE
df.loc[filt] #取到返回值为TRUE的行
- len()
df['name'].str.len() #获取name每个元素的len
- str.replace()
df['Sex'].str.replace(('male':'M'))
[ 重要事项 ]:注意对于取到的Series,如df[‘name’],字符串方法的措施都是,首先用.str
取到每个元素,然后再对每个元素使用所调用的方法。在pandas这叫做element wise。