pandas 更改数据apply/applymap/map/replace

改变表格内容

选择一个并赋值
df.loc[1,'name']='starfish' #选择第二行 name标签下的值更改为starfish
选择多个使用列表来赋值
df.loc[1,['name','age']]=['starfish', 18 ]
数据类型转换
df['age'].astype(float)

nan的默认类型是float,因此计算有缺失值nan列的平均值时,应将该列的数值类型变为float计算。

apply/applymap/map/replace方法

  • apply()

    df.email.apply(funcname)
    df.email.apply(len) #使用自定义函数 lambda 内置函数都可以

    [tips]

    1. apply()对dataframe来说是针对Series使用

    2. apply()对Series来说是针对Series中的每一个元素使用

  • applymap()
    applymap针对整个dataframe中的每一个元素使用

  • map()/replace()
    df.map({'from1':'to1','from2':'to2'})

    [TIPS] :

    • map与replace不同的是会将字典中没有映射的变为NAN,而replace则将其保持原样。

    • 注意map()/replace()都是针对一个元素的所有内容。例如要查找shell替换为shell_script,而一个表格内容为shell/c++ 则不替换,因为该元素内的内容不仅仅是shell。

  • replace()与.str.replace()区别

    replace 针对整个内容,例如要查找shell替换为shell_script,而一个表格内容为shell/c++ 则不替换。

    .str.replace 针对一个元素内部字符串的内容,例如要查找shell替换为shell_scrip,而一个表格内容为shell/c++ 则替换为shell_script/c++。

<think>好的,我现在需要回答用户关于pandas库中map函数的使用说明和示例的问题。首先,我得回忆一下map函数的基本用法,确保自己理解正确。map函数主要用于Series对象,对每个元素应用一个函数或者通过字典、Series进行映射替换。 接下来,我应该考虑用户可能的疑问,比如参数是什么、返回类型以及常见应用场景。用户可能想知道如何用自定义函数、字典或者Series来使用map,所以需要准备这些方面的示例。 然后,我得检查提供的引用内容。引用3提到了applymapmap的例子,用户可能混淆了这两个函数,需要明确区分。map是Series的方法,而applymap是DataFrame的方法,作用于每个元素。这点需要强调清楚,避免误解。 另外,用户提供的引用中有关于性能优化的内容,比如使用tqdm预测执行时间,但map函数本身可能不直接涉及,不过可以提一下在处理大数据时注意效率,结合引用1的内容。 我需要结构清晰地分步骤说明map函数的用法,包括基本语法、参数说明、示例代码和注意事项。每个示例要简单明了,展示不同的使用方式,比如使用字典映射、lambda函数以及自定义函数。同时,要指出常见错误,比如在DataFrame上直接使用map会导致错误,应该用applymap。 最后,生成相关问题,引导用户深入学习,比如与apply的区别、处理缺失的方法以及性能优化。这些相关问题要围绕map函数的扩展应用和常见问题,帮助用户全面理解。</think>### Pandas `map` 函数使用说明 `map` 是 pandas 中用于 **Series 对象**的常用函数,主要用于对每个元素进行映射操作(如替换、转换等)。其核心功能是通过字典、函数或另一个 Series 实现元素级映射。 --- #### 1. **基本语法** ```python Series.map(arg, na_action=None) ``` - **`arg`**: 映射规则,可以是函数、字典或另一个 Series。 - **`na_action`**(可选): 设置为 `'ignore'` 时,忽略 NaN 的映射操作。 --- #### 2. **使用场景与示例** ##### 示例 1:通过字典映射替换 ```python import pandas as pd # 创建示例 Series s = pd.Series(['a', 'b', 'c', 'd']) # 定义映射字典 mapping = {'a': 'Apple', 'b': 'Banana', 'c': 'Cherry', 'd': 'Date'} # 应用 map 函数 s_mapped = s.map(mapping) print(s_mapped) ``` 输出: ``` 0 Apple 1 Banana 2 Cherry 3 Date dtype: object ``` ##### 示例 2:通过函数转换元素 ```python # 使用 lambda 函数将字母转换为大写 s_upper = s.map(lambda x: x.upper()) print(s_upper) ``` 输出: ``` 0 A 1 B 2 C 3 D dtype: object ``` ##### 示例 3:使用自定义函数 ```python # 定义外部函数:在字母后添加数字 def add_number(letter): return f"{letter}1" s_custom = s.map(add_number) print(s_custom) ``` 输出: ``` 0 a1 1 b1 2 c1 3 d1 dtype: object ``` ##### 示例 4:处理缺失(na_action) ```python # 包含 NaN 的 Series s_with_nan = pd.Series(['a', 'b', None, 'd']) # 映射时忽略 NaN s_ignore_nan = s_with_nan.map(mapping, na_action='ignore') print(s_ignore_nan) ``` 输出: ``` 0 Apple 1 Banana 2 None 3 Date dtype: object ``` --- #### 3. **注意事项** - **仅适用于 Series**:`map` 是 Series 的方法,若对 DataFrame 使用会报错。DataFrame 的元素级操作需用 `applymap`[^3]。 - **映射覆盖范围**:若字典或函数未覆盖所有元素,未匹配的会变为 `NaN`。 - **性能优化**:对大规模数据,优先使用向量化操作(如 `replace` 或 pandas 内置函数)而非 `map`,以提高效率[^1]。 --- #### 4. **与 `apply` 的区别** - `map` 用于元素级操作,`apply` 可处理更复杂的行/列逻辑(如聚合计算)[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值