Blue is white,dark is not blue(高等数学 上)

高等数学(上)

第一章 函数与极限

第一节 映射与函数

一 集合

  • 集合(集)是指具有某种特定性质的事物的总体,组成该集合的事物成为元素(元)
  • 集合用列举法和描述法(M={x|x具有某种性质})表示
  • 对于数集 “*”排除该数集的0,“+”排除该集合的0和负数集
  • N表示自然树集合,N+表示正整数集合,Z表示整数集合,Q表示有理数,R表示实数
  • 若A包含于B或者B包含A,则A是B的子集;若A/B互为子集,则A=B;若A不等于B,则A是B的真子集。若集合不含元素则为空集,空集是任何集合的子集(因为任何集合也可能是空集,所以不能说是真子集)
  • 属于A或者属于B的集合为并集,既属于A也属于B的集合为交集,属于A但所不属于B的集合为A和B的差集
  • 全集I和A的差集成为A的补集(AC
  • 集合遵循交换 结合 分配 对偶
  • A和B的直积(笛卡尔乘积)表示由集合A和集合B任意元素x y的有序对组成的集合 A X B= {(x,y)|x属于A且y属于B}
  • 区间是常用数集,小括号表示开区间 中括号表示闭区间,R是无限区间
  • 领域表示以某点为中心的开区间 U(a,d)a表示领域中心,d表示领域半径

二 映射

  • X Y是非空集合,如果存在法则f使得X中的每个元素都有唯一的元素y与之对应,则称f为X到Y的映射,X称为定义域,x原像按照f法则得到的像构成值域,值域包含与Y,定义域 Df,值域 Rf或f(x),多个原向可以有相同的像,反之不能
  • 若值域等于集合Y,则称f为X到Y的满射,若任意原像对应的像不相同,则称f为X到Y的单射,同时满足 称一一映射
  • 只有单射才存在逆映射,只有值域包含于定义域才能构成符合映射

三 函数

  • 某种映射f关系称为函数 y = f(x) x属于Df,x自变量,y因变量
  • 函数三种表示法 表格 图形 公式
  • 函数的有界性,在定义域内 存在M使得 |f(x)| 小于等于 M 则称函数在定义域内有界,函数有界的充分必要条件是既有上界也有下界
  • 函数的单调性 在区间I 若x1 < x2,恒定有y1 < y2,则函数在区间I上单调
  • 函数的奇偶性 若定义域关于原点对称,定义域上的对称点具有相同的像,则是偶函数,若对称点的像互为相反数,则称奇函数
  • 函数的周期性 若存在R+数l,使得f(x)= f(x+l),l是最小正周期,f为周期函数
  • 反函数对应逆映射,复合函数对应复合映射
  • 函数运算 和 差 积 商
  • 初等函数 幂函数 指数函数(底数不为1) 对数函数 三角函数 反三角函数,初等函数经过四册运算和复合运算的函数也是初等函数

第二节 数列的极限

一 数列极限的定义

  • 存在常数a,对于任意值b,总存在正整数N,当n>N时,不等式 |xn - a| < b 成立,那么常数a就是数列{xn}的极限,若不存在常数a,说明数列发散,不收敛
  • 证明数列收敛于常数a,需要对于任何正数,无论多小,总存在正整数N,使得数列xn和常数a之差等于b,且当n大于N时,之差小于b
  • 如果数列收敛,那么极限唯一,那么一定有界,那么子数列也收敛

第三节 函数的极限

一 函数极限的定义

  • 在自变量的变化过程中,函数值无限接近某个确定的数值,那个该值就算该过程中的极限
  • 自变量趋于x0的极限,若函数在x0去心邻域有定义,若存在常数A,对于任意的b,总存在c,当x在以x0为中心c为半径的领域取值是,函数值小于A总成立,那么A就是函数在趋于x0的极限
  • 自变量趋于无穷时,若自变量绝对值在大于某个正整数时有定义,若存在正数A,对于任意的b,存在正数N,使得大于N的正数c,满足|f© -A| <b 成立,那么称自变量趋于无穷时,函数的极限为A
  • 函数极限 唯一性 局部有界性 局部保号性

第四节 无穷大与无穷小

一 无穷小

  • 当函数的自变量趋于某个值或者无穷时,函数值趋于0,那么就称此时函数无穷小

二 无穷大

  • 当函数的自变量趋于某个值或者无穷时,函数值趋于无穷,那么就称此时函数无穷大

第五节 极限运算法则

  • 有限个无穷小的和也是无穷小
  • 有界函数与无穷小的乘积是无穷小
  • 函数极限遵循四册运算
  • 如果对于任意的自变量x,满足f(x) > g(x),f的极限为a,g的极限为b,则a>b

第六节 极限存在准则 两个重要极限

  • 夹逼准则 表示当函数f满足 g(x) < f(x) < m(x),若g和m的极限在某个值或者无穷是的极限为A,则函数f的极限也为A
  • 单调有界数列必有极限
  • 柯西极限存在准则 若数列存在极限,则对于任意给定的正数b,存在正整数N,使得当m > N,n>N时,有|xn - xm| < b

第七节 无穷小比较

  • 无穷小比较通过它们的商进行,若商的极限为无穷,则是高比低 ,为0相反,为常数表示同阶,为1表示等价

第八节 函数的连续性

  • 当自变量的变化量趋于无穷小时,函数的增量也趋于无穷小,那么函数在自变量处连续
  • 函数的间断点 自变量x不在定义域 ,有定义域,但是极限不存在,存在但是不相等

第九节 连续函数的运算与初等函数的连续性

  • 连续函数的四则运算保持连续性
  • 连续函数的反函数和复合函数在正确的定义域内也连续
  • 初等函数在其定义域内都是连续的

第十节 闭区间上连续函数的性质

  • 在闭区间上连续的函数在该区间有界且一定能取最大最小值(开区间不满足比如tan)
  • 零点定理 若f在闭区间【a,b】上连续,且f(a).f(b) < 0,则在区间中存在一点x,使得f(x) = 0
  • 介质定理 若f在闭区间【a,b】上连续,C为f(a)与f(b)之间的数,则必定存在变量x xs属于(a,b),使得f(x) = C

第二章 导数和微分

第一节 导数的概念

  • 速度问题和切线问题都是通过无限接近,来代表瞬时速度或者切线
  • 若函数f在x0某个领域处有定义,函数增量和自变量增量之比,当自变量增量趋于0时,该比值存在,说明极限存在,说明函数在该处可导,且导数为该比值 f(x0)
  • 常数的导数为0 ,幂函数的导数xa = a.xa-1, 正玄导数为余玄 ,余玄导数为负的正玄,指数函数的导数 ax 的导数 ax.lna,对数logax的导数为1/xlna
  • 根据点斜式方程可以求出曲线上的 切线方程,前提时导数求出
  • 可导一定连续,连续不一定可导比如y=|x|, x = 0 时连续但是不可导

第二节 函数的求导法则

  • 若函数f/g在某点具有导数,那么经过四则运算后仍然存在导数 且加减的导数等于导数的加减,乘法的导数等于f的导数乘g + g的导数乘f ,除法导数请百度
  • 反函数的导数等于直接函数导数的倒数 ,即g为f的反函数,g的导数的等于1/f的导数
  • 复合函数求导等于各自导数的积

第三节 高阶导数

  • 比如加速度就是二阶导数
  • 高阶导数就是对导数进行求导

第四节 隐函数 参数方程

  • 隐函数就是变量x、y满足方程式F(x,y)= 0
  • 隐函数的显示化后,进行求导
  • 参数方程通过中间量替换,从而得到y与x的显示方程式

第五节 函数的微分

  • 函数在某点可微的充分必要条件是可导
  • 函数的微分dy = f(x)dx ,函数的微分就是只自变量变化a,因变量的变化值 ,y = x ,x增量为1,则y的增量就是1,因为导数为1
  • 微分的四则运算和导数的类似,请百度
  • 微分的复合运算 dx = f的导数×g的导数 dx
  • 充分条件 a是b的充分条件 则a->b,不能反推
  • 必要条件 a是b的必要条件 则表明b想成立必须有a,还可能需要其他条件,若b成立,则a一定成立
  • 充分必要条件 a->b,且b->a

第三章 微分中值定理和导数的应用

第一节 微分中值定理

  • 罗尔定理 拉格朗日中值定理
  • 中值定理和微分的思想类似 f(b) -f(a) = f©(b-a) 表示因变量的增量等于自变量的增量乘上这个平均值导数,就和匀加速直线运动一样的效果,因为连续可导,所以必定存在这个平均值
  • 柯西中值定理根据斜率相同构建 左边函数增量之比 等号右边导数之比,因为自变量增量约去

第二节 洛必达法则

  • 洛必达法则是对未定式求极限的法则,所谓未定式就是当自变量趋于0或者无穷时无法得出极限的表达式,比如分子分母同时趋于0或者无穷,根据洛必达法则,该极限等于分子分母求导后的极限,此过程可以重复进行知道表达式不是未定义式

第三节 泰勒公式

  • 泰勒公式是根据一直函数在某点的各阶导数的情况下,用多项式之和近似代替函数在某点的值,不是很懂

第四节 函数的单调性 曲线凹凸性

  • 函数在某个区间的单调性可以通过导数来判断,如果导数大于0,则单调递增,反之相反
  • 曲线的凹凸性,可以根据曲线上任意两点的连线的中点和曲线上的中点,一般取自变量x中点 观察因变量y的大小情况,如果连线在上表明凹,反之是凸曲线

第五节 函数的极限与最大最小值

  • 极大值表示在某个领域内的最大值,极小值类似,他们都是局部概念
  • 如果函数在某点可导,且存在极值,那么导数为0,反之不成立,例如立方,导数为0,但是不是极值
  • 根据极值左右两边的导数情况可以判断是极大值还是极小值,也可以通过导数为0,左右两边导数是否异号来判断是否是极值,异号说明是极值
  • 最大值最小值可以通过极值的比较来获取

第六节 函数的图形描述

  • 函数的图形 主要通过函数的奇偶性、周期性、一阶导数、二阶导数、特殊点等确定函数的周期升降曲线凹凸性来描绘

第七节 曲率

  • 曲率表示弯曲程度 可以用切线角度和弧长比值的极限表示

第四章 不定积分

第一节 不定积分的概念与性质

  • 原函数就是指明被求导前的函数,例如对函数f求导的g,则称f为g的原函数
  • 如果函数在区间连续,那么改函数一定存在原函数,因为常数的导数为0,所以存在无限个原函数
  • 求原函数的过程成为积分,因为没有限定区间,所以是未定积分
  • 原函数的图形称为被积分函数的积分曲线
  • 微分和积分是互逆的过程,积分公式和微分求导公式也就是互逆的
  • 和的积分等于积分的和,积分表达式常数可以外置

第二节 换元积分法

  • 和复合函数微分相反的操作,可以使用换元法,进行积分
  • 换元需要先积分自变量由x升为中间变量u,此过程需要从x的积分表达式中分离一部分,作为中间函数的导数,以便合成du,达成换元对u进行积分,然后对简单积分表达式进行积分,最后将u替换为x

第三节 部分积分法

  • 部分积分法是根据乘法导数性质得到的,因为乘法导数是两项之和,所以求一项可以用另外的一项推出

第五章 定积分

第一节 定积分的定义

  • 通俗来说,定积分就是在某个区间内求和,积分变量在某个函数映射下的因变量之和
  • 函数在区间内连续,那么一定可积,但是不一定可导可微
  • 定积分的求法,牛顿 莱布里兹公式 函数f在区间[a,b]的定积分就是原函数在区间的增量级 即F(b)-F(a) = 定积分
  • 定积分的换元法和未定积分一样,对于定积分来说只是求出原函数之后带入上下界,求出增量
  • 反常积分,如果原函数在区间内不收敛,那么就是反常积分,无穷无限制,比如对2x在0到无穷求定积分

第六章 定积分的应用

第一节 定积分的元素法

  • 所谓元素法就是将积分表达是当成某种元素,积分表达式一般由被积分函数和积分增量之积表示,也就原函数在某刻的微分

第二三节 几何学物理学应用

  • 扇形面积 0.5r2
  • 光滑曲线求弧长
  • 变速直线运动
  • 水的压力等

第七章 微分方程

第一节 什么是微分方程

  • 微分方程含有未知函数、未知函数的导数和自变量的关系式
  • 求未知函数的过程称为解微分方程
  • 对于一阶微分方程可以用分离变量对等号两侧进行积分,得出未知函数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值