描述
今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:设有一个长度N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串: 312,当N=3,K=1时会有以下两种分法:
1)3*12=36
2)31*2=62
这时,符合题目要求的结果是: 31*2=62
现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。
格式
输入格式
程序的输入共有两行:
第一行共有2个自然数N,K (6<=N<=40,1<=K<=6)
第二行是一个长度为N的数字串。
输出格式
屏幕输出(结果显示在屏幕上),相对于输入,应输出所求得的最大乘积(一个自然数)
样例1
样例输入1
4 2
1231
样例输出1
62
限制
1 second
来源
NOIP 2000年 第六届 普及组 第3题
题解
从第i位到第j位所组成的数,等于从第i位到第j-1位所组成的数*10,再加上第j位注意要将数字字符转换为数,因为ss是串,从第0位开始存储,所以下标-1。求出所有的num[i][j]以及f[i][0]之后,就可以得到以下的状态转移转移方程
f[i][j]=max(f[i][j],f[h][j-1]*num[h+1][i]);i为前i个数字所组成的数,j为*的个数,h为最后一个*放置的位置。
代码
#include <iostream>
#define N 42
#define K 8
using namespace std;
int n,k,a[N][N],f[N][K];
string ss;
int main()
{
cin>>n>>k>>ss;
for(int i=1;i<=n;i++)
{
for(int j=i;j<=n;j++)
a[i][j]=a[i][j-1]*10+ss[j-1]-'0';
f[i][0]=a[1][i];
}
for(int j=1;j<=k;j++)
for(int i=2;i<=n;i++)
for(int h=1;h<i;h++)
f[i][j]=max(f[i][j],f[h][j-1]*a[h+1][i]);
cout<<f[n][k]<<endl;
return 0;
}