描述
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
对于30%的数据,L <= 10000;
对于全部的数据,L <= 10^9。
格式
输入格式
输入的第一行有一个正整数L(1 <= L <= 10^9),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1 <= S <= T <= 10,1 <= M <= 100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。
输出格式
输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。
样例1
样例输入1
10
2 3 5
2 3 5 6 7
样例输出1
2
限制
1s
做题思路
看到这道题的想到的第一个方法就是枚举,但是考虑到庞大的数据范围,所以放弃。由于m<=100,意味着石子很少,石子之间有很长的距离。s<=t<=10,,说明青蛙每次跳的距离很短,就是说跳很多次都不会踩到石子,这部分可以考虑压缩。
第1步:9,10
第2步:18,19,20
第3步:27,28,29,30
第4步:36,37,38,39,40
第5步:45,46,47,48,49,50
第6步:54,55,56,57,58,59,60
第7步:63,64,65,66,67,68,69,70
第8步:72,73,74,75,76,77,78,79,80
第9步:81,82,83,84,85,86,87,88,89,90
通过枚举极端情况,可以发现第8步和第9步之间已经是步步可达了,意味当两石子的距离超过一定的数值,不管青蛙怎么跳,都不影响状态值,因此可以压缩。很容易发现当s,t的值比9和10小时,会在更短的距离内步步可达,因此可将此数值定为90。特例,如果s=t,不能用上面的办法,但也很容易实现,石子的位置只要在s的倍数上,就一定可达。需要注意是的,题目中并未声明石子的位置是按顺序提供的,因此需要排序
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 105
#define MAX 10001
using namespace std;
int len,s,t,m,ans,tot;
int a[N],v[MAX],f[MAX];
int main()
{
scanf("%d%d%d%d",&len,&s,&t,&m);
for(int i=1;i<=m;i++)
cin>>a[i];
if(s==t)
{
for(int i=1;i<=m;i++)
if(a[i]%s==0)
ans++;
printf("%d\n",ans);
return 0;
}
sort(a+1,a+1+m);
v[tot=a[1]%90]=1;
for(int i=2;i<=m;i++)
v[tot+=(a[i]-a[i-1])%90]=1;
for(int i=tot;i>=0;i--)
{
f[i]=100;
for(int j=s;j<=t;j++)
f[i]=min(f[i],f[i+j]+v[i]);
}
printf("%d\n",f[0]);
return 0;
}