数字类型
Python语言包括三种数字类型:
1.整数类型
2.浮点数类型
3.复数类型
整数类型
与数学中的整数概念一致,没有取值范围的概念;
例如可以轻易计算pow(2,15)的结果:
太长了,后面没截上图。。。。。。
示例:
1010,99,-217
0x9a,-0X89(0x,0X开头表示16进制数)
0b010,-0B101(0b,0B开头表示2进制数)
0o123,-0O456(0o,0O开头表示8进制数)
浮点数类型
带有小数点以及小数的数字;
Python语言中浮点数的数值范围存在限制,小数精度也存在限制。这种限制与在不同计算机系统有关;
示例:
0.0,-77.,-2.17
96e4,4.3e-3,9.6E5(科学计数法)
科学计数法使用字母“e”或者“E”作为幂的符号,以10为基数。科学计数法的含义如下:e = a * 10^b
复数类型
与数学中的复数概念一致,z = a + bj, a是实数部分,b是虚数部分,a和b都是浮点类型,虚数部分用j或者J标识
示例:
12.3 + 4j, -5.6 + 7j
z = 1.2e-4+5.6e+89j(实部和虚部是什么?)
对于复数z,可以用z.real获得实数部分,z.imag获得虚数部分
z.real = 0.000123 z.imag = 5.6e+89
数字类型的关系
三种类型存在一种逐渐“扩展”的关系:
整数->浮点数->复数
(整数是浮点数的特例,浮点数是复数特例)
不同数字类型之间可以进行混合运算,运算后生成结果为最宽类型;
123 + 4.0 = 127.0(整数 + 浮点数= 浮点数)
数字类型的转换
三种类型可以互相转换;
函数:int(), float(), complex()
示例:
int(4.5) = 4(直接去掉小数部分)
float(4) = 4.0(增加小数部分)
complex(4) = 4 + 0J
数字类型的判断
函数:type(x), 返回x的类型, 适用于所有类型的判断
示例:
数字类型的运算
x + y : x与y之和
x - y : x与y之差
x * y : x与y之积
x / y : x与y之商
x // y :不大于x与y之商的最大整数
x % y :x与y之商的余数
+x :x
-x:x :的复数
x**y :x的y次幂
abs(x) :x的绝对值
divmod(x,y) :(x//y,x%y)
pow(x,y) :x的y次幂