【2021-02-07】python自学笔记三?

本文介绍了Python中的三种数字类型:整数、浮点数和复数。详细阐述了每种类型的表示方式、取值范围、运算规则以及相互之间的转换。还提及了数字类型的混合运算和类型判断。通过示例展示了数字类型的使用,并讨论了数字类型的转换函数如int(), float(), complex()。此外,文章还提到了数字类型的运算操作,如加减乘除、取模、取整等。
摘要由CSDN通过智能技术生成

数字类型

Python语言包括三种数字类型:

1.整数类型
2.浮点数类型
3.复数类型

整数类型

与数学中的整数概念一致,没有取值范围的概念
例如可以轻易计算pow(2,15)的结果:
在这里插入图片描述
在这里插入图片描述
太长了,后面没截上图。。。。。。

示例:
1010,99,-217
0x9a,-0X89(0x,0X开头表示16进制数)
0b010,-0B101(0b,0B开头表示2进制数)
0o123,-0O456(0o,0O开头表示8进制数)

浮点数类型

带有小数点以及小数的数字;
Python语言中浮点数的数值范围存在限制,小数精度也存在限制。这种限制与在不同计算机系统有关;

示例:
0.0,-77.,-2.17
96e4,4.3e-3,9.6E5(科学计数法)
科学计数法使用字母“e”或者“E”作为幂的符号,以10为基数。科学计数法的含义如下:e = a * 10^b

复数类型

与数学中的复数概念一致,z = a + bj, a是实数部分,b是虚数部分,a和b都是浮点类型,虚数部分用j或者J标识

示例:
12.3 + 4j, -5.6 + 7j

z = 1.2e-4+5.6e+89j(实部和虚部是什么?)
对于复数z,可以用z.real获得实数部分,z.imag获得虚数部分
z.real = 0.000123 z.imag = 5.6e+89在这里插入图片描述
在这里插入图片描述

数字类型的关系

三种类型存在一种逐渐“扩展”的关系:

整数->浮点数->复数
(整数是浮点数的特例,浮点数是复数特例)

不同数字类型之间可以进行混合运算,运算后生成结果为最宽类型;
123 + 4.0 = 127.0(整数 + 浮点数= 浮点数)

数字类型的转换

三种类型可以互相转换;

函数:int(), float(), complex()

示例:
int(4.5) = 4(直接去掉小数部分)
float(4) = 4.0(增加小数部分)
complex(4) = 4 + 0J

数字类型的判断

函数:type(x), 返回x的类型, 适用于所有类型的判断
示例:
在这里插入图片描述

在这里插入图片描述

数字类型的运算

x + y : x与y之和

x - y : x与y之差

x * y : x与y之积

x / y : x与y之商

x // y :不大于x与y之商的最大整数

x % y :x与y之商的余数

+x :x

-x:x :的复数

x**y :x的y次幂

abs(x) :x的绝对值

divmod(x,y) :(x//y,x%y)

pow(x,y) :x的y次幂

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值