- 博客(28)
- 资源 (1)
- 收藏
- 关注
转载 MatLab2012b/MatLab2013b 分类器大全(svm,knn,随机森林等)
转载自:http://blog.csdn.net/xuhaijiao99/article/details/15027093train_data是训练特征数据, train_label是分类标签。Predict_label是预测的标签。MatLab训练数据, 得到语义标签向量 Scores(概率输出)。1.逻辑回归(多项式MultiNomial logistic Regr
2013-12-07 09:05:17 953
转载 机器学习(Machine Learning)大家与资源
=======================国外====================Machine Learning 大家(1):M. I. Jordan (http://www.cs.berkeley.edu/~jordan/) 在我的眼里,M Jordan无疑是武林中的泰山北斗。他师出MIT,现在在berkeley坐镇一方,在附近的
2014-06-23 15:26:51 1902
转载 from local coordinate coding to local constrained linear coding
转载出处:http://hi.baidu.com/windey1988/item/de022800dfab8018acdc7066 http://blog.csdn.net/jwh_bupt/article/details/9837555 最近阅读了关于Yu Kai,Yang Jianchao合著的文章,包括前面的博客中的那篇,一
2014-05-16 11:26:44 996
转载 Java基本开发环境搭建
一、开发工具获取1、开发工具包JDK● 下载地址:到ORACLE公司官方网站(http://www.oracle.com/)下载。 ● 下载文件的选择:对于windows操作系统,最后下载的文件的文件名格式为:jdk-6uX-windows-i586.exe,其中“6uX”代表版本号,其中包含了JDK和JRE,文件大小大概70M; 例如笔者下载最新的JDK为Ja
2014-03-07 12:02:17 697
转载 LaTeX新人教程,30分钟从完全陌生到基本入门
LaTeX新人教程,30分钟从完全陌生到基本入门 by Nan 对于真心渴望迅速上手LaTeX的人,可以只看正文。曾经在缝缝补补中变得长长的“前言”被我丢到了正文后面当“后记”。后记部分可以跳过不看或只看粗体。=============================================下面是教程正文。(正文最后应大
2014-01-27 14:03:14 1224
转载 DPM(Defomatble Parts Model)原理
DPM(Deformable Parts Model)Reference:Object detection with discriminatively trained partbased models. IEEE Trans. PAMI, 32(9):1627–1645, 2010."Support Vector Machines for Multiple-Instance
2013-12-10 08:49:01 1161
原创 Deep Learning(持续更新……)
2006年的3篇论文打开了深度学习的格局,由Hinton的革命性的在深度信念网(Deep Belief Networks, DBNs)上的工作所引领:Hinton, G. E., Osindero, S. and Teh, Y.,A fast learning algorithm for deep belief nets.Neural Computation 18:1527-1554, 2
2013-12-09 20:12:13 1020
原创 从结构化风险最小化角度理解SVM
最近在讨论班上,LXH同学讲到Structural SVM with latent variables,最后大家提出了一个问题:他讲的怎么没体现出SVM的思想啊?? 刚开始我也是这么想的,后来想了一下,也许可以换个角度理解SVM。 统计学习方法由模型、策略和算法构成。模型是选择一个概率分布模型或者决策函数空间来模拟样本空间。策略是优化模型所用到的目标函数。算法是
2013-12-07 11:12:39 6981 1
转载 svm 预测标签的概率输出
转载自:http://blog.csdn.net/xuhaijiao99/article/details/14519941对于图片或文本,如果童鞋们需要初试分类效果,在MatLab做实验是比较简单的。例如:使用Libsvm库函数svmtrain()训练学习出一个模型Factor, 然后代入Factor,得到预测标签向量Predict_label。但是,这些都是人家的工作,假若我们加
2013-12-07 09:07:21 9196
转载 图像处理与计算机视觉基础,经典以及最近发展
原文的链接是http://www.iask.sina.com.cn/u/2252291285/ish。版权归 杨晓冬 朋友所有。图像处理与计算机视觉基础,经典以及最近发展By xdyang(杨晓冬xdyang.ustc@gmail.com)一、 绪论1. 为什么要写这篇文章从2002年到现在,接触图像快十年了。虽然没有做出什么很出色的工作,不过在这个领域摸爬滚打了十
2013-11-17 11:13:28 1855
原创 暂时规规矩矩用C
孟岩写的不错!http://blog.csdn.net/myan/article/details/1778843语言毕竟只是工具,目的是解决问题,算法设计才是核心;但是必须要有一门上手的工具,才能把算法实现。暂时先用好C,学好C++,学好C++是为了能看懂别人的代码,学好C是为了解决自己的问题。孟岩另一篇blog快速掌握一个语言最常用的50%提到应该每年都学习一门新语言,本人也
2013-10-17 16:08:20 749
转载 理解矩阵
转自孟岩:http://blog.csdn.net/myan/article/details/647511(一)前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。可怜的chensh,谁让你趟这个
2013-10-17 12:22:20 800
转载 目标检测的图像特征提取之(一)HOG特征
转自:http://blog.csdn.net/zouxy09/article/details/79293481、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛
2013-10-17 11:10:42 954
转载 Deformable Part Model的学习
转至http://bubblexc.com/y2011/422/Deformable Part Model是最近两年最为流行的图像中物体检测模型,利用这个模型的方法在近几届PASCAL VOC Challenge中都取得了较好的效果。其作者,芝加哥大学的Pedro Felzenszwalb教授,也因为这项成就获得了VOC组委会授予的终身成就奖。有人认为这个模型是目前最好的物体检测算法。
2013-10-15 14:44:21 678
转载 SIFT特征提取分析
转自:http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图
2013-09-06 13:33:21 933
转载 【转载】计算机视觉与模式识别 code
转自:http://www.cnblogs.com/robin-ty/archive/2013/02/20/2919292.html
2013-09-06 13:27:44 820
转载 [转载]和机器学习和计算机视觉相关的数学
转自:http://blog.sina.com.cn/s/blog_8ebf09370101gi81.html
2013-09-06 13:23:40 747
转载 光流法简单介绍
光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。其计算方法可以分为三类:(1)基于区域或者基于特征的匹配方
2013-09-05 10:27:17 958
原创 RankSVM
根据目前了解的迹象表明,RankSVM应该是T。T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02:ACMSIGKDD.提出来的。后来O. Chapelle and S. Keerthi. Efficient algorithms for ranking with svms. Information
2013-09-04 09:11:03 5637
原创 重温SVM
支持向量机(Support Vector Machine .SVM)是一种二分类模型。基本思想是,在特征空间上通过分类间隔最大化得到一个线性分类器;这一点有别于线性感知器,感知器是使分类错误最小,结果是一个解区域,而SVM得到唯一最优解。 1、线性可分SVM. 当样本集线性可分时,可得到分离超平面为: w*.x+b=0, 决策函数为:f(x)=sign(w*.x+b); 函
2013-09-03 11:34:40 907
原创 将模糊技术用于灰度变换和空间滤波
一、模糊技术 先举例说一下模糊集合,以人为例,如果把一群人分为男人和女人,那么有个很清晰的划分,从性别角度讲,一群人就是“干脆”集合;而如果把这群人分成年轻人和非年轻人,界限就是很模糊的,比如三十以下算作年轻人,比三十多一天的貌似也差不多年轻,在实际应用中,这种干脆划分有很大局限性。\ 我们时常需要使“年轻”的意思更有弹性,比如说让31岁的人比33岁的人年轻程度更高,这就需要建立一个模
2013-08-29 16:00:47 3349
原创 空间滤波
>>g=imfilter(f, w, filtering_mode, boundary_options,size_options);#fitering_mode选项为'corr', 'conv'分别代表相关滤波和卷积滤波,后者结果相当于将前者旋转180度#boundary_options用于处理边界填充问题,可以为填充0,复制边界,对称映象,周期拓展等方式填充#size_opt
2013-08-29 09:47:26 1080
原创 感情是经不起怀疑的
感情是经不起怀疑的两个人在一起,无论真心或假意如果真心,就请相信一个人怀疑,一个人崩溃如果假意,你又凭甚怀疑!他若假意,结局又能怎样?既然在一起,就期望美好的相依他若假意,迟早会被现实撕开面孔真爱可以让世界充满绚烂,却会被怀疑轻易撕毁就算虚情也不过如此既然选择了去爱,就完全的投入愿完全相信你也是一颗真心
2013-08-28 22:25:35 1007
原创 Laplace 平滑
1、if y~{0;1}:p(y=1)=(#"1"+1)/("0"+1+"1"+1);2、if y~{1,2,...k}:p(y=k)=(#"k"+1)/m+k; m is the number of samples.
2013-08-28 22:24:05 1013
原创 学会安慰
原来真正的伴侣并不是每天形影不离,也是日常的关心和问候,而是总能给你带来心里安慰的人,是心灵的伴侣。而我向来不会安慰别人,根本上是没有领悟到这种心灵相依的要领。谢谢你昨晚的直白,让我认识到自己一直以来的自以为是,认识到安慰的真正意义。我想现在我明白了家人/朋友的真正意义了,并不仅仅是生活的伴侣,而且是心灵的伴侣。爱你
2013-08-26 10:11:20 673
原创 在Debian 7中开关touchpad
1。首先检查确认系统是否支持touchpad。 $dmesg | grep Synaptic $cat /proc/bus/input/devices2。查看touchpad 驱动及安装 $apt-cache search driver-synaptic $apt-get install ×× #×
2013-08-26 09:36:07 969
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人