Computer Vision
文章平均质量分 59
CrazStone
这个作者很懒,什么都没留下…
展开
-
空间滤波
>>g=imfilter(f, w, filtering_mode, boundary_options,size_options);#fitering_mode选项为'corr', 'conv'分别代表相关滤波和卷积滤波,后者结果相当于将前者旋转180度#boundary_options用于处理边界填充问题,可以为填充0,复制边界,对称映象,周期拓展等方式填充#size_opt原创 2013-08-29 09:47:26 · 1082 阅读 · 0 评论 -
from local coordinate coding to local constrained linear coding
转载出处:http://hi.baidu.com/windey1988/item/de022800dfab8018acdc7066 http://blog.csdn.net/jwh_bupt/article/details/9837555 最近阅读了关于Yu Kai,Yang Jianchao合著的文章,包括前面的博客中的那篇,一转载 2014-05-16 11:26:44 · 996 阅读 · 0 评论 -
LaTeX新人教程,30分钟从完全陌生到基本入门
LaTeX新人教程,30分钟从完全陌生到基本入门 by Nan 对于真心渴望迅速上手LaTeX的人,可以只看正文。曾经在缝缝补补中变得长长的“前言”被我丢到了正文后面当“后记”。后记部分可以跳过不看或只看粗体。=============================================下面是教程正文。(正文最后应大转载 2014-01-27 14:03:14 · 1224 阅读 · 0 评论 -
DPM(Defomatble Parts Model)原理
DPM(Deformable Parts Model)Reference:Object detection with discriminatively trained partbased models. IEEE Trans. PAMI, 32(9):1627–1645, 2010."Support Vector Machines for Multiple-Instance转载 2013-12-10 08:49:01 · 1161 阅读 · 0 评论 -
Algorithms in Data Mining的经典总结
July:Top 10 Algorithms in Data Mining转载 2013-12-07 09:16:11 · 793 阅读 · 0 评论 -
从结构化风险最小化角度理解SVM
最近在讨论班上,LXH同学讲到Structural SVM with latent variables,最后大家提出了一个问题:他讲的怎么没体现出SVM的思想啊?? 刚开始我也是这么想的,后来想了一下,也许可以换个角度理解SVM。 统计学习方法由模型、策略和算法构成。模型是选择一个概率分布模型或者决策函数空间来模拟样本空间。策略是优化模型所用到的目标函数。算法是原创 2013-12-07 11:12:39 · 6981 阅读 · 1 评论 -
svm 预测标签的概率输出
转载自:http://blog.csdn.net/xuhaijiao99/article/details/14519941对于图片或文本,如果童鞋们需要初试分类效果,在MatLab做实验是比较简单的。例如:使用Libsvm库函数svmtrain()训练学习出一个模型Factor, 然后代入Factor,得到预测标签向量Predict_label。但是,这些都是人家的工作,假若我们加转载 2013-12-07 09:07:21 · 9198 阅读 · 0 评论 -
MatLab2012b/MatLab2013b 分类器大全(svm,knn,随机森林等)
转载自:http://blog.csdn.net/xuhaijiao99/article/details/15027093train_data是训练特征数据, train_label是分类标签。Predict_label是预测的标签。MatLab训练数据, 得到语义标签向量 Scores(概率输出)。1.逻辑回归(多项式MultiNomial logistic Regr转载 2013-12-07 09:05:17 · 954 阅读 · 0 评论 -
目标检测的图像特征提取之(一)HOG特征
转自:http://blog.csdn.net/zouxy09/article/details/79293481、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛转载 2013-10-17 11:10:42 · 954 阅读 · 0 评论 -
Deformable Part Model的学习
转至http://bubblexc.com/y2011/422/Deformable Part Model是最近两年最为流行的图像中物体检测模型,利用这个模型的方法在近几届PASCAL VOC Challenge中都取得了较好的效果。其作者,芝加哥大学的Pedro Felzenszwalb教授,也因为这项成就获得了VOC组委会授予的终身成就奖。有人认为这个模型是目前最好的物体检测算法。转载 2013-10-15 14:44:21 · 678 阅读 · 0 评论 -
光流法简单介绍
光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。其计算方法可以分为三类:(1)基于区域或者基于特征的匹配方转载 2013-09-05 10:27:17 · 958 阅读 · 0 评论 -
RankSVM
根据目前了解的迹象表明,RankSVM应该是T。T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02:ACMSIGKDD.提出来的。后来O. Chapelle and S. Keerthi. Efficient algorithms for ranking with svms. Information原创 2013-09-04 09:11:03 · 5637 阅读 · 0 评论 -
[转载]和机器学习和计算机视觉相关的数学
转自:http://blog.sina.com.cn/s/blog_8ebf09370101gi81.html转载 2013-09-06 13:23:40 · 749 阅读 · 0 评论 -
【转载】计算机视觉与模式识别 code
转自:http://www.cnblogs.com/robin-ty/archive/2013/02/20/2919292.html转载 2013-09-06 13:27:44 · 820 阅读 · 0 评论 -
SIFT特征提取分析
转自:http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图转载 2013-09-06 13:33:21 · 934 阅读 · 0 评论 -
将模糊技术用于灰度变换和空间滤波
一、模糊技术 先举例说一下模糊集合,以人为例,如果把一群人分为男人和女人,那么有个很清晰的划分,从性别角度讲,一群人就是“干脆”集合;而如果把这群人分成年轻人和非年轻人,界限就是很模糊的,比如三十以下算作年轻人,比三十多一天的貌似也差不多年轻,在实际应用中,这种干脆划分有很大局限性。\ 我们时常需要使“年轻”的意思更有弹性,比如说让31岁的人比33岁的人年轻程度更高,这就需要建立一个模原创 2013-08-29 16:00:47 · 3349 阅读 · 0 评论 -
机器学习(Machine Learning)大家与资源
=======================国外====================Machine Learning 大家(1):M. I. Jordan (http://www.cs.berkeley.edu/~jordan/) 在我的眼里,M Jordan无疑是武林中的泰山北斗。他师出MIT,现在在berkeley坐镇一方,在附近的转载 2014-06-23 15:26:51 · 1905 阅读 · 0 评论