一:N维数组对象ndarray
数组对象可以去掉元素之间运算所需的循环,使一维向量更像单个数据
设置专门的数组对象,经过优化,可以提升这类应用的运算速度。ndarray是一个多维数组对象,有两部分组成:(1)实际的数据。(2)描述这些数据的元数据(数据维度,数据类型等)。
一:ndarray类型属性
.ndim 轴的数量或维度的数量
.shape ndarray对象的尺度,对于矩阵,n行m列
.size ndarray对象元素的个数,相当于.shape中n*m的值
.dtype ndarray对象的元素类型
.itemsize ndarray对象中每个元素的大小,以字节为单位
二:ndarray的元素类型
ndarray数组的类型转换
new_type = f.astype(new_type) #使用该函数会创建一个新数组
a = np.arange(24).reshape((2, 3, 4)) print(a.dtype) b = a.astype(np.float16) print(b.dtype)
三:ndarray数组的创建
1.从Python中的列表 元组等类型创建ndarray数组
2.使用NumPy中函数创建ndarray数组 如arange,ones,zeros函数等
3.从字节流(raw bytes)中创建ndarray数组
4.从文件中读取特定格式,创建ndarray数组
5.np.ones_like(a)根据a形状生成全1数组
6.np.zeros_like(a)根据a形状生成全0数组
7.np.full_like(a,val)根据a形状生成val的数组8.np.linspace()
9.np.concatenate()
四:ndarray数组的维度变换
1. .flatten(shape) 不改变数组元素,返回一个shape形状的数组,原数组不变
2. .resize(shape) 与reshape功能一致,但修改原数组
3. .swapaxes(ax1,ax2) 将数组n个维度中两个维度进行调换
4. .flatten() 对数组进行降维,返回折叠后的一维数组,原数组不变
二:数组的索引和切片
数组的索引和切片
索引:获取数组中特定位置元素的过程
切片:获取数组元素子集的过程一维数组的索引和切片:与Python列表类似
a = np.array([9, 8, 7, 6, 5])
索引:a[2]=7
切片:a[1:4:2]=[8,6]起始编号:终止编号(不含):步长多维数组的索引和切片
索引:
a = np.arange(24).reshape((2, 3, 4))
a[1,2,3]=23
切片:
a[:,1,-3]=array([5, 17]) 选取一个维度用:间隔切片:
a[:,:,::2]
array([[[ 0, 2],
[ 4, 6],
[ 8, 10]],
[[12, 14],
[16, 18],
[20, 22]]])
三:数组的运算
1.一元函数
1.np.abs(x) np.fabs(x) 计算数组各元素的绝对值
2.np.sqrt() 计算数组各元素的平方根
3.np.square() 计算数组各元素的平方
4.np.log(x) np.log10(x) np.log2()
5.np.cell(x) np.floor() 计算数组各元素的ceiling值或floor值
6.np.rint() 计算数组元素的四舍五入值
7.np.modf(x) 将数组各元素的小数和整数部分以两个独立数组形式返回
8.np.cos np.cosh np.sin np.sinh np.tan np.tanh 计算数组各元素的普通型和双曲型三角函数
9.np.exp() 计算数组各元素的指数值
10.np.sign() 计算数组各元素的符号值
2.二元函数
1.+ - * / **两个数组各元素进行对应运算
2.np.maximum(x,y) np.fmax() np.minimum() np.fmin() 元素级的最大值/最小值计算
3.np.mod(x,y) 元素级别的模运算
4.np.copysign(x,y) 将数组y中各元素值的符号值给数组x对应元素
5.> < >= <= == != 算数比较,产生布尔型数组