人脸识别CNN网络训练流程

目标

训练论文”A Lightened CNN for Deep Face Representation”中的caffe网络。

数据

CASIA-WebFace 可在这里申请。

预处理

获得CASIA-Webface数据集之后,使用tools中的:

  • 脚本addLabeltopic.py将图片的label置为0-10574,并将label加入图片的名字中,如0_001.jpg
  • 脚本getallfilesInOnedir.py将所有图片复制到某一级目录下,如image/
  • 使用code_point中的工具对人脸图片进行标点,其中bbox.txt中指定了固定的人脸位置。
  • 可使用show_resulr.m脚本对标点结果进行可视化。
  • 根据每个图片样本的标点信息将人脸进行旋转和裁剪,使得样本标准化。
    经过上述操作,可以得到10575人的494414张标准化人脸图块。

使用caffe,训练模型

  • 生成lmdb数据
  • 编写train_test.prototxt和solver.prototxt
  • 开始训练!

网络配置

详细配置查看查看我的github项目中

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 12
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 16
    评论
基于CNN人脸识别是指使用卷积神经网络CNN)模型来实现人脸识别的功能。在这个过程中,程序使用了Python的numpy、theano和PIL等库,并采用了类似LeNet5的CNN模型。 要进行基于CNN人脸识别,首先需要将人脸图像转化为数组或矩阵的形式。这可以通过使用Python的图像库PIL来实现,只需几行代码就可以完成。具体的方法可以参考之前一篇文章中的说明,该文章提供了读取和保存图像数据库的示例。 通过使用CNN模型进行训练和测试,可以将人脸图像与已知的人脸数据库进行比对,并识别出输入图像中的人脸属于哪个人。基于CNN人脸识别模型在olivettifaces人脸数据库上进行了实验,将模型的误差降到了5%以下。 需要注意的是,这个程序只是作者个人学习过程中的一个玩具实现,样本规模较小,模型可能会过拟合。因此,在实际应用中,还需要根据具体情况对模型进行调整和优化。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [DeepLearning tutorial(5)CNN卷积神经网络应用于人脸识别(详细流程+代码实现)](https://blog.csdn.net/u012162613/article/details/43277187)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cliff_zf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值