最大似然估计&贝叶斯决策
最大似然估计已知分布,寻找一个参数,使得这个分布发生的概率最大。θ=argmax∏i=1np(xi;θ)\theta=argmax\prod_{i=1}^np(x_i;\theta)θ=argmax∏i=1np(xi;θ)也可以理解为最小化KL散度。举例:一个硬币被抛了100次,61次正面朝上,假设正面朝上的概率分别为1/3,1/2,2/3,以上三个哪个是最大似然估计?P(H=61∣p=13)=9.6×10−9P(H=61|p=\frac{1}{3})=9.6\times10^{-9}P(H