- 博客(58)
- 资源 (2)
- 收藏
- 关注
原创 使用 Pyinstaller 打包 PPOCRLabel
Fork PPOCRLabel 的官方仓库,然后 Clone创建 conda 环境pyinstaller安装依赖使用命令查看 pyinstaller 的使用帮助文本(或者查看官网: https://pyinstaller.org/en/stable/usage.html ):A path to search for imports (like using PYTHONPATH). Multiple paths are allowed, separated by , or use this o
2025-09-12 21:39:53
913
原创 使用vllm部署neo4j的text2cypher-gemma-2-9b-it-finetuned-2024v1模型
由于使用的基于的 workbench,需要进行以下准备(其他系统环境可忽略)将以下添加到设置 git 代理。
2025-09-12 21:37:14
458
原创 笛卡尔参数化直线霍夫变换 Hough Transform for lines with cartesian parameterisation
如果一个像素值大于阈值,并且在其邻域内是局部最大值,则认为该像素是一个峰值。邻域的大小由参数指定,默认为 3。邻域内的像素值需要小于当前像素值,否则当前像素不是峰值。
2025-09-12 21:31:32
961
原创 已知直线的斜率和一个点,如何计算x intercept? 使用 ChatGPT 英文问答
You:xyChatGPT:The x−y1mx−x1where mx1y10(for the x−y1mx−x1)xxx1−my1x1−my1You:mxcChatGPT:mxc0xxy00mxcxx−mcc(x1y1)(x1y1)ymx+ccy1mx1c⟹cy1−。
2025-09-12 20:59:47
942
原创 How to work with merged cells in Excel with `openpyxl` in Python?
Import module and read the workbook:Print merged cells:Check the type of Refer the below link for CellRange and MergedCellRange:Check the type of , it is .Check type of again:Refer the link for method on sheet: https://openpyxl.readthedocs.io/e
2025-09-12 20:58:11
423
原创 阅读翻译Discovering Modern C++之5.2.3 A `const`-Clean View Example
constconst。
2025-09-12 20:36:50
604
原创 论文阅读与翻译之 PET-SQL - A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency
近期在文本到SQL(Text2SQL)领域的进展着重于激发大型语言模型(LLM)的上下文学习能力,并取得了显著的成果。然而,这些方法在处理冗长的数据库信息和复杂的用户意图时面临挑战。本文提出了一个两阶段框架,以增强当前基于LLM的自然语言到SQL系统的性能。我们首先引入了一种新颖的提示词表示方法,称为引用增强表示,它包括模式信息(schema information)和从表中随机抽样的单元格值,以指导LLM生成SQL查询。
2025-09-12 17:54:38
938
原创 Vanna优化:使用重排序模型优化生成的SQL语句(where语句)
Vanna是一个Text-to-SQL生成工具,它通过大模型和RAG将用户问题转换为SQL语句。
2025-09-12 17:28:17
359
原创 使用自定义LLM和Embedding模型部署Vanna:基于RAG的Text-to-SQL生成
部署Vanna时我们可以选择使用什么大模型和向量数据库,比如OPEN AI和ChromaDB等这些官方支持的。但是存在一个问题,为了保证数据不存在泄露风险,部署自己的大模型服务比较安全。Vanna官方文档中说明可以使用自定义大模型的,不过没有给出具体的例子,本文提供一个例子以供参考。
2025-09-12 17:27:00
490
原创 YOLOv8 从yaml配置文件生成PyTorch模型
的 YAML 配置采用同样的风格,都是长度为 4 的列表,分别为 from, repeats, module 和 args,其中。其中重复次数和输出通道并不是完全固定的,会受到模型复杂度的影响(备注:yolov8n 比 yolov8s 的模型复杂度要小)其中 yolov8n 和 yolov8s 的 depth 为 0.33,以下为其原重复次数及对应更新后的重复次数。而 yolov8l 和 yolovx 的 depth 为 1.0,不受影响,完全和 yaml 配置文件保持一致。其中 scales 默认有。
2025-09-12 17:25:18
678
原创 Hugging Face NLP课程学习记录 - 3. 微调一个预训练模型
时传递的一个参数,默认是一个函数,它将把你的数据集转换为PyTorch张量,并将它们拼接起来(如果你的元素是列表、元组或字典,则会使用递归)。这在我们的这个例子中下是不可行的,因为我们的输入不是都是相同大小的。这是因为将所有样本填充到最大长度是低效的:更好的做法是在构建批次时对样本进行填充,这样我们只需要填充到该批次中的最大长度,而不是整个数据集中的最大长度。为了正确地定义它,我们需要知道训练步骤的数量,这个数量是我们想要运行的 epoch 数与训练批次数量的乘积(训练数据加载器的长度)。
2025-09-12 17:23:57
823
原创 Graph RAG论文阅读笔记
Graph RAG是一种结合知识图谱与检索增强生成的新方法,旨在解决传统RAG在全局性问题上的局限性。该方法通过构建实体知识图谱并预生成社群摘要,能够有效处理大规模文本语料库的查询。实验表明,相较于简单RAG,Graph RAG在答案全面性和多样性方面表现更优,同时计算资源消耗更低。该方法已在GitHub开源实现,支持全局和局部搜索功能。
2025-09-12 17:21:40
820
原创 论文阅读翻译之 Large Language Model Agent - A Survey on Methodology, Applications and Challenges
智能体协作
2025-05-08 15:44:22
1046
1
原创 几种基础的激活函数及其实现
# 几种基础的激活函数及其实现## 说明:- 首次发表日期:2024-10-31- 参考: - https://insidelearningmachines.com/neural_network_activation_functions - https://stackoverflow.com/questions/44230635/avoid-overflow-with-softplus-function-in-python
2024-10-31 22:07:31
891
原创 Hugging Face NLP课程学习记录 - 2. 使用 Hugging Face Transformers
# Hugging Face NLP课程学习记录 - 2. 使用 Hugging Face Transformers## 说明:- 首次发表日期:2024-09-19- 官网: https://huggingface.co/learn/nlp-course/zh-CN/chapter2- 关于: 阅读并记录一下,只保留重点部分,大多从原文摘录,润色一下原文
2024-09-19 10:32:42
1267
原创 Hugging Face NLP课程学习记录 - 0. 安装transformers库 & 1. Transformer 模型
# Hugging Face NLP课程学习记录 - 0. 安装transformers库 & 1. Transformer 模型## 说明:- 首次发表日期:2024-09-14- 官网: https://huggingface.co/learn/nlp-course/zh-CN/chapter1- 关于: 阅读并记录一下,只保留重点部分,大多从原文摘录,润色一下原文
2024-09-14 00:41:12
1638
原创 论文阅读笔记 --- 图模互补:知识图谱与大模型融合综述 --- 按参考文献整理
# 论文阅读笔记 --- 图模互补:知识图谱与大模型融合综述 --- 按参考文献整理# 关于- 首次发表日期:2024-09-13- 论文原文链接:http://xblx.whu.edu.cn/zh/article/doi/10.14188/j.1671-8836.2024.0040/- 将文章中的参考文献整理一下,基本保持原文的目录结构
2024-09-13 22:27:35
1931
1
原创 学习笔记 - 知识图谱的符号表示方法
知识表示的相关名词定义 - 实体(Entities)---表示知识的核心概念,其他所有东西都是围绕其构建的。 - 实体可以是物理实体(如化合物、疾病、患者、地点),也可以是抽象实体(如想法(idea)、情绪(sentiments)等概念)。 实体可以具有不同的属性,如人名、城市的地理位置等。它们是知识库中的“一级公民”,因为它们代表了整个知识库创建的原子信息(atomic information)。
2024-09-13 13:10:44
1531
原创 论文阅读翻译之Deep reinforcement learning from human preferences
对于复杂的强化学习(RL)系统来说,要与现实世界环境有效互动,我们需要向这些系统传达复杂目标。在这项工作中,我们探索了以(非专家)人类对轨迹段对的偏好来定义目标。我们展示了这种方法可以在没有奖励函数的情况下有效解决复杂的RL任务,包括Atari游戏和模拟机器人运动,同时仅需对不到1%的代理与环境交互提供反馈。这大大降低了人类监督的成本,使其能够实际应用于最先进的强化学习系统。为了展示我们方法的灵活性,我们表明可以在大约一小时的人类参与时间内成功训练出复杂的新行为。
2024-09-11 16:42:44
1953
1
原创 lxml官方入门教程(The lxml.etree Tutorial)翻译
这是一个关于使用lxml.etree处理XML的教程。它简要概述了ElementTree API的主要概念,以及一些简单的增强功能,这些功能可以让您作为程序员的生活更轻松。
2024-09-05 16:37:41
1843
原创 LLaMA-Factory微调入门个人重制版
LLaMA-Factory微调入门个人重制版## 说明:- 首次发表日期:2024-08-30- LLaMA-Factory 官方Github仓库: https://github.com/hiyouga/LLaMA-Factory
2024-08-30 01:09:00
1560
4
原创 本地启动Flower来监控Dify的Celery任务队列
本地启动Flower来监控Dify的Celery任务队列## 说明:- 首次发表日期:2024-08-29
2024-08-29 03:23:26
408
1
原创 在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)
在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)## 说明:- 首次发表日期:2024-08-28
2024-08-28 11:35:57
1071
原创 使用RMBG-1.4进行抠图(背景移除)
使用RMBG-1.4进行抠图(背景移除)## 说明:- 首次发表日期:2024-08-28- RMBG-1.4 Hugging Face 地址: https://huggingface.co/briaai/RMBG-1.4
2024-08-28 03:25:15
1200
原创 Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型
Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型
2024-08-27 19:32:45
2705
1
原创 使用xinference部署自定义embedding模型(docker)
使用xinference部署自定义embedding模型(docker)## 说明:- 首次发表日期:2024-08-27- 官方文档: https://inference.readthedocs.io/zh-cn/latest/index.html
2024-08-27 10:55:51
3110
原创 freeswitch python 模块Demo
为一个正则表达式,表示一个或者多个数字,前边的field为destination_number,那么condition标签意思是来电号码是数字的话,则满足条件。使用Linphone等软电话注册,然后拨打电话,可以听到音频文件在播放。执行reloadxml或者重启freeswitch使得修改生效。模块,可以在安装freeswitch时,修改。目录,文件或目录地址会因此受到影响。:我将freeswitch安装在。
2024-08-26 17:30:02
519
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅