大厂高频经典面试题(38)-二进制数转字符串

1. 题目:

给定一个介于0和1之间的实数(如0.72),类型为double,打印它的二进制表达式。如果该数字无法精确地用32位以内的二进制表示,则打印“ERROR”。

2. 解题思路:

1)检查输入数字是否在0和1之间,否则返回错误

2)使用"0."作为二进制字符串的开头

3)重复以下步骤直到数字变为0或超过32位:

  • 将数字乘以2
  • 如果结果>=1,添加"1"到字符串,并减去1
  • 否则,添加"0"到字符串

4)如果超过32位仍未归零,返回"ERROR"

3. 代码完整实现(C++):

#include <cmath>
#include <iostream>
#include <string>

using namespace std;

string doubleToBinaryString(double num) {
    // 检查输入范围
    if (num <= 0 || num >= 1) {
        return "ERROR";
    }

    string binary = "0.";
    int count = 0;

    while (num > 0) {
        if (count >= 32) {
            return "ERROR";
        }

        /*
        乘以2的作用是"查看当前位是0还是1":

        1. 乘以2相当于把二进制数左移一位。
        例如:0.101 × 2 = 1.01(小数点右移)

        2. 整数部分就会告诉我们这一位是0还是1,
        1.01的整数部分是1 → 这一位是1,
        然后去掉整数部分继续处理小数部分。

        3. 重复这个过程就能逐位得到二进制表示。
         */
        num *= 2;
        if (num >= 1) {
            binary += "1";
            num -= 1;
        } else {
            binary += "0";
        }

        count++;
    }

    return binary;
}

int main() {
    double num = 0.72;  // 0.625
    string result = doubleToBinaryString(num);
    cout << "二进制表示: " << result << endl;
    return 0;
}

4. 代码分析:

为什么二进制转换要一直乘以2?下面用更简单的方式解释这个原理:

十进制和二进制小数对比

先看十进制小数(我们日常用的):
比如 0.625 表示:6/10 + 2/100 + 5/1000
每位权重是:1/10, 1/100, 1/1000…(即10的负幂次)

二进制小数类似:
比如 0.101 表示:1/2 + 0/4 + 1/8
每位权重是:1/2, 1/4, 1/8…(即2的负幂次)

乘以2的原理

乘以2的作用是"查看当前位是0还是1":
1)乘以2相当于把二进制数左移一位
例如:0.101 × 2 = 1.01(小数点右移)

2)整数部分就会告诉我们这一位是0还是1
1.01的整数部分是1 → 这一位是1
然后去掉整数部分继续处理小数部分

3)重复这个过程就能逐位得到二进制表示

实际例子:0.625转二进制

1)0.625 × 2 = 1.25 → 整数部分1(第一位是1),剩下0.25
2)0.25 × 2 = 0.5 → 整数部分0(第二位是0),剩下0.5
3)0.5 × 2 = 1.0 → 整数部分1(第三位是1),剩下0.0(结束)

所以0.625的二进制是0.101

为什么0.72会出错
因为0.72在二进制中是无限循环的:
0.72 × 2 = 1.44 → 1
0.44 × 2 = 0.88 → 0
0.88 × 2 = 1.76 → 1

这个过程永远不会归零,所以32位内无法精确表示。

5. 运行结果:

二进制表示: 0.101
二进制表示: ERROR

感谢您的阅读。原创不易,如您觉得有价值,请点赞,关注。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水草

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值