算法练习 - 环形房屋盗窃(动态规划)

题目

在一个环形街道上,有若干房屋排列成圈,每个房屋内都藏有一定数量的现金。相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。小偷的目标是在不触发警报装置的情况下,偷窃到尽可能多的现金

分析

首尾相连的数组,间隔取数,求能取到的最大值。

解决方案

由于首尾相连,第一个和最后一个不能同时取,将该问题拆解为两种情况

  1. 不取第一个
  2. 不取最后一个

拆分成两个线性问题,两种情况中最大值即为最终结果。

算法步骤

假设数组nums[],其中前n个元素间隔取数的最大和为dp[n],前n-1个元素间隔取数的最大和为dp[n-1],前n-2个元素间隔取数的最大和为dp[n-2]。那么三者的关系为

dp[n] = max(dp[n-1], dp[n-2] + nums[n])

依据上述公式,可以从从0开始堆叠,得到最终结果

代码实现

    public int rob(int[] nums) {
        int result1 = getResult(nums, 0, nums.length-2);
        int result2 = getResult(nums, 1, nums.length-1);
        return Math.max(result1, result2);
    }

    private static int getResult(int[] nums, int start, int end) {
        // prv1表示dp[n-1], prv2表示dp[n-2]
        int prv1 =0;
        int prv2 =0;
        int maxSum = 0;
        // 处理数组长度小于等于2的情况
        if (nums.length == 1) {
            return nums[0];
        } else if (nums.length == 2) {
            return Math.max(nums[0], nums[1]);
        }
        for (int i = start; i <= end; i++) {
            maxSum = Math.max(prv1, prv2 + nums[i]);
            prv2 = prv1;
            prv1 = maxSum;
        }
        return maxSum;
    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值