题目
在一个环形街道上,有若干房屋排列成圈,每个房屋内都藏有一定数量的现金。相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。小偷的目标是在不触发警报装置的情况下,偷窃到尽可能多的现金
分析
首尾相连的数组,间隔取数,求能取到的最大值。
解决方案
由于首尾相连,第一个和最后一个不能同时取,将该问题拆解为两种情况
- 不取第一个
- 不取最后一个
拆分成两个线性问题,两种情况中最大值即为最终结果。
算法步骤
假设数组nums[],其中前n个元素间隔取数的最大和为dp[n],前n-1个元素间隔取数的最大和为dp[n-1],前n-2个元素间隔取数的最大和为dp[n-2]。那么三者的关系为
dp[n] = max(dp[n-1], dp[n-2] + nums[n])
依据上述公式,可以从从0开始堆叠,得到最终结果
代码实现
public int rob(int[] nums) {
int result1 = getResult(nums, 0, nums.length-2);
int result2 = getResult(nums, 1, nums.length-1);
return Math.max(result1, result2);
}
private static int getResult(int[] nums, int start, int end) {
// prv1表示dp[n-1], prv2表示dp[n-2]
int prv1 =0;
int prv2 =0;
int maxSum = 0;
// 处理数组长度小于等于2的情况
if (nums.length == 1) {
return nums[0];
} else if (nums.length == 2) {
return Math.max(nums[0], nums[1]);
}
for (int i = start; i <= end; i++) {
maxSum = Math.max(prv1, prv2 + nums[i]);
prv2 = prv1;
prv1 = maxSum;
}
return maxSum;
}