【算法基础】冒泡排序算法 - JAVA

一、算法基础

1.1 什么是冒泡排序

冒泡排序是一种简单直观的比较排序算法。它重复地走访待排序的数列,依次比较相邻两个元素,如果顺序错误就交换它们,直到没有元素需要交换为止。

1.2 基本思想

  • 比较相邻元素:从头开始,两两比较相邻元素
  • 交换位置:如果前一个元素大于后一个元素,则交换位置
  • 重复操作:每完成一次迭代,最大的元素会"冒泡"到数组末尾
  • 多次迭代:重复以上步骤,每次排除已排好序的末尾元素

1.3 时间复杂度

  • 最好情况:O(n),当数组已经排好序
  • 最坏情况:O(n²),当数组逆序排列
  • 平均情况:O(n²)

二、冒泡排序的分类

2.1 标准冒泡排序

标准版本每次将最大元素冒泡到末尾:

  • 外层循环:控制排序轮数,最多n-1轮
  • 内层循环:控制每轮比较次数,逐渐减少
  • 无优化:即使数组已排序仍会执行全部循环

2.2 优化冒泡排序

通过标记变量检测一轮比较中是否有交换发生:

  • 设置标记:初始假设本轮无交换
  • 发生交换:更新标记变量
  • 提前终止:若一轮比较无交换发生,则排序完成

三、冒泡排序实现

3.1 标准实现

public class BubbleSort {
    /**
     * 标准冒泡排序算法
     * @param arr 待排序数组
     */
    public static void bubbleSort(int[] arr) {
        int n = arr.length;
        
        // 外层循环控制排序轮数
        for (int i = 0; i < n - 1; i++) {
            
            // 内层循环进行相邻元素比较和交换
            // 每轮结束后,最大的i+1个元素已经排好序
            for (int j = 0; j < n - i - 1; j++) {
                
                // 如果当前元素大于下一个元素,交换它们
                if (arr[j] > arr[j + 1]) {
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }
    }
}

3.2 优化实现

public class OptimizedBubbleSort {
    /**
     * 优化版冒泡排序算法
     * @param arr 待排序数组
     */
    public static void bubbleSort(int[] arr) {
        int n = arr.length;
        boolean swapped;
        
        // 外层循环控制排序轮数
        for (int i = 0; i < n - 1; i++) {
            swapped = false;
            
            // 内层循环进行相邻元素比较和交换
            for (int j = 0; j < n - i - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    // 交换元素
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                    
                    // 标记发生了交换
                    swapped = true;
                }
            }
            
            // 如果没有发生交换,说明数组已经有序,提前结束
            if (!swapped) {
                break;
            }
        }
    }
}

3.3 双向冒泡排序(鸡尾酒排序)

public class CocktailSort {
    /**
     * 双向冒泡排序(鸡尾酒排序)算法
     * @param arr 待排序数组
     */
    public static void cocktailSort(int[] arr) {
        int left = 0;
        int right = arr.length - 1;
        boolean swapped;
        
        while (left < right) {
            swapped = false;
            
            // 从左向右,将最大元素冒泡到右侧
            for (int i = left; i < right; i++) {
                if (arr[i] > arr[i + 1]) {
                    int temp = arr[i];
                    arr[i] = arr[i + 1];
                    arr[i + 1] = temp;
                    swapped = true;
                }
            }
            
            // 如果没有交换,数组已经有序
            if (!swapped) {
                break;
            }
            
            right--; // 最大元素已经到位,缩小右边界
            swapped = false;
            
            // 从右向左,将最小元素冒泡到左侧
            for (int i = right; i > left; i--) {
                if (arr[i] < arr[i - 1]) {
                    int temp = arr[i];
                    arr[i] = arr[i - 1];
                    arr[i - 1] = temp;
                    swapped = true;
                }
            }
            
            // 如果没有交换,数组已经有序
            if (!swapped) {
                break;
            }
            
            left++; // 最小元素已经到位,缩小左边界
        }
    }
}

四、算法分析与优化

4.1 理论推导

冒泡排序的工作原理可以用以下数学表达式描述:

  • 比较次数:(n-1) + (n-2) + ... + 1 = n(n-1)/2
  • 最大交换次数:同上 n(n-1)/2
  • 元素移动次数:最多3×n(n-1)/2(每次交换需要3次移动)

4.2 优化策略

  1. 提前终止优化:如前述,检测是否有交换发生
  2. 记录最后交换位置:每轮记录最后一次交换的位置,下一轮只需扫描到该位置即可
  3. 奇偶交替扫描:类似鸡尾酒排序,减少"乌龟"(小元素靠后)的情况
public class EnhancedBubbleSort {
    /**
     * 记录最后交换位置的优化冒泡排序
     * @param arr 待排序数组
     */
    public static void bubbleSort(int[] arr) {
        int n = arr.length;
        int lastSwappedIndex = n - 1;
        int newLastSwappedIndex;
        
        while (lastSwappedIndex > 0) {
            newLastSwappedIndex = 0;
            
            for (int i = 0; i < lastSwappedIndex; i++) {
                if (arr[i] > arr[i + 1]) {
                    // 交换元素
                    int temp = arr[i];
                    arr[i] = arr[i + 1];
                    arr[i + 1] = temp;
                    
                    // 记录最后交换的位置
                    newLastSwappedIndex = i;
                }
            }
            
            // 更新下一轮排序的终止位置
            lastSwappedIndex = newLastSwappedIndex;
        }
    }
}

五、完整示例程序

public class BubbleSortDemo {
    
    public static void main(String[] args) {
        // 测试数据
        int[] arr = {64, 34, 25, 12, 22, 11, 90};
        
        System.out.println("原始数组: ");
        printArray(arr);
        
        // 执行优化版冒泡排序
        optimizedBubbleSort(arr);
        
        System.out.println("\n排序后数组: ");
        printArray(arr);
    }
    
    /**
     * 优化的冒泡排序实现
     */
    public static void optimizedBubbleSort(int[] arr) {
        int n = arr.length;
        boolean swapped;
        
        for (int i = 0; i < n - 1; i++) {
            swapped = false;
            
            for (int j = 0; j < n - i - 1; j++) {
                // 如果当前元素大于下一个元素,交换它们
                if (arr[j] > arr[j + 1]) {
                    swap(arr, j, j + 1);
                    swapped = true;
                }
            }
            
            // 如果没有发生交换,数组已经有序
            if (!swapped) {
                System.out.println("提前结束于第 " + (i + 1) + " 轮");
                break;
            }
        }
    }
    
    /**
     * 交换数组中两个元素
     */
    private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    
    /**
     * 打印数组
     */
    private static void printArray(int[] arr) {
        for (int num : arr) {
            System.out.print(num + " ");
        }
        System.out.println();
    }
}

六、总结

冒泡排序是一种经典的排序算法,其特点如下:

6.1 优点

  • 实现简单:代码直观易懂,适合教学使用
  • 稳定性好:相等元素不会改变相对顺序
  • 原地排序:不需要额外空间
  • 自适应性:对于部分有序数据效率较高

6.2 缺点

  • 效率低下:平均时间复杂度为O(n²)
  • 比较次数多:即使数据已经有序,基本版本仍需大量比较

6.3 适用场景

  • 小规模数据:元素数量较少时表现尚可
  • 教学演示:算法思想简单直观
  • 接近有序数据:优化版本在这种情况下效率较高

冒泡排序虽然在大规模数据中效率不高,但其思想简单,实现容易,是学习排序算法的良好起点。在实际应用中,可根据数据特性选择更高效的排序算法,如快速排序、归并排序等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值