1 下载安装 anaconda
2 Anaconda Prompt (Anaconda3) 进入 创建一个名字为 tensorflow-gpu 的新的虚拟环境
创建的命令是 : conda create -n tensorflow-gpu
进入这个虚拟环境 : conda activate tensorflow-gpu
3 在conda activate tensorflow-gpu虚拟环境中安装tensorflow
pip install tensorflow-gpu==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
有时清华的这个源不稳定 可以利用下面的阿里的源
pip install tensorflow-gpu==2.2.0 -i https://mirrors.aliyun.com/pypi/simple/
4 Anaconda的图形界面选到 tensorflow-gpu 这个环境 更新jupyter lab到最新(我做的时候最新版本是2.1.5)
更新完成后 tensorflow-gpu虚拟环境命令行界面 conda install nb_conda // 在Jupyter Notebook中使用Python虚拟环境
5 GPU的折腾...
(如果之前有安装其他版本请卸载 只需要卸载cuda相关即可 并删除 C:\Program Files\NVIDIA GPU Computing Toolkit)
5.1 下载 cuda_10.1.105_418.96_win10.exe 并安装 一路默认就好
5.2 下载 cudnn-7.6.5 解压到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
5.3 设置环境变量 path里增加 :
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\CUPTI\lib64;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp;
显卡相关信息 :
命令 nvidia-smi
cuda 相关信息查看命令: nvcc --version
6. 进入jupyter 查看
tensorflow-gpu虚拟环境命令行界面 输入 jupyter lab
新建一个文件 里面输入
import tensorflow as tf
print(tf.__version__)
print(tf.keras.__version__)
tf.config.list_physical_devices('GPU')
运行结果 :
7. 安装 graphviz 参考 https://blog.csdn.net/shangxiaqiusuo1/article/details/85283432
从https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi这里下载graphviz-2.38.msi
安装 在系统环境变量配置以下环境变量
1 建立变量名GRAPHVIZ_DOT,值为安装的路径C:\Program Files (x86)\Graphviz2.38\bin\dot.exe
2 建立变量名 GRAPHVIZ_INSTALL_DIR, 值为C:\Program Files (x86)\Graphviz2.38
3 在PATH或Path中添加Graphviz的bin目录路径,如C:\Program Files (x86)\Graphviz2.38\bin
然后 tensorflow-gpu虚拟环境命令行界面 安装以下3个模块
pip install graphviz -i https://mirrors.aliyun.com/pypi/simple/
pip install pydot -i https://mirrors.aliyun.com/pypi/simple/
pip install pydot-ng -i https://mirrors.aliyun.com/pypi/simple/
8 测试graphviz
因为测试需要keras 所以先安装
pip install keras -i https://mirrors.aliyun.com/pypi/simple/
jupyter 下输入以下内容
import tensorflow as tf
import keras
import pydot_ng as pydot
import graphviz
from tensorflow.keras import layers
inputs = tf.keras.Input(shape=(784,), name='img')
h1 = layers.Dense(32, activation='relu')(inputs)
h2 = layers.Dense(32, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h2)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name='mnist model')
model.summary()
keras.utils.plot_model(model, 'mnist_model.png', show_shapes=True)
keras.utils.plot_model(model, 'model_info.png', show_shapes=True)
然后运行如下: 注意图的下面的那个图.
9 最后在jupyter 测试gpu :
这里https://blog.csdn.net/newstrongers/article/details/104516470的博主说测试不成功 我这里利用他的例子来测试:
jupyter 输入
import tensorflow as tf
import keras
import pydot_ng as pydot
import graphviz
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)
print(keras.__version__)
tf.config.list_physical_devices('GPU')
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
c = tf.matmul(a, b)
print(c)
运行结果如下 :