Win10下TensorFlow2.2.0+Cuda10.1+cudnn7.6.5+jupyter lab + pydot 开发环境搭建

1  下载安装 anaconda 

2  Anaconda Prompt (Anaconda3) 进入 创建一个名字为 tensorflow-gpu 的新的虚拟环境

    创建的命令是 : conda create -n tensorflow-gpu

     进入这个虚拟环境 : conda activate tensorflow-gpu

3 在conda activate tensorflow-gpu虚拟环境中安装tensorflow

   pip install tensorflow-gpu==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple 

   有时清华的这个源不稳定 可以利用下面的阿里的源 

     pip install tensorflow-gpu==2.2.0 -i  https://mirrors.aliyun.com/pypi/simple/

4 Anaconda的图形界面选到 tensorflow-gpu 这个环境 更新jupyter lab到最新(我做的时候最新版本是2.1.5)

    更新完成后 tensorflow-gpu虚拟环境命令行界面 conda install nb_conda  // 在Jupyter Notebook中使用Python虚拟环境

 

5 GPU的折腾...

  (如果之前有安装其他版本请卸载 只需要卸载cuda相关即可 并删除 C:\Program Files\NVIDIA GPU Computing Toolkit)

  5.1 下载 cuda_10.1.105_418.96_win10.exe 并安装 一路默认就好

  5.2 下载 cudnn-7.6.5 解压到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 

  5.3 设置环境变量 path里增加 :

       C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\CUPTI\lib64;

       C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include;

       C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin;

       C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp;

显卡相关信息 : 

   命令 nvidia-smi

cuda 相关信息查看命令:  nvcc --version

6. 进入jupyter 查看

    tensorflow-gpu虚拟环境命令行界面 输入 jupyter lab

    新建一个文件 里面输入 

    import tensorflow as tf
    print(tf.__version__)
    print(tf.keras.__version__)
    tf.config.list_physical_devices('GPU')

运行结果 : 

  7. 安装 graphviz  参考  https://blog.csdn.net/shangxiaqiusuo1/article/details/85283432

     从https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi这里下载graphviz-2.38.msi

     安装 在系统环境变量配置以下环境变量

      1 建立变量名GRAPHVIZ_DOT,值为安装的路径C:\Program Files (x86)\Graphviz2.38\bin\dot.exe
      2 建立变量名 GRAPHVIZ_INSTALL_DIR, 值为C:\Program Files (x86)\Graphviz2.38
      3 在PATH或Path中添加Graphviz的bin目录路径,如C:\Program Files (x86)\Graphviz2.38\bin

     然后  tensorflow-gpu虚拟环境命令行界面 安装以下3个模块

     pip install graphviz  -i  https://mirrors.aliyun.com/pypi/simple/

     pip install pydot  -i  https://mirrors.aliyun.com/pypi/simple/

      pip install pydot-ng -i  https://mirrors.aliyun.com/pypi/simple/

8 测试graphviz

    因为测试需要keras 所以先安装

    pip install keras  -i  https://mirrors.aliyun.com/pypi/simple/

jupyter 下输入以下内容

    import tensorflow as tf
    import keras
    import pydot_ng as pydot
    import graphviz
    from tensorflow.keras import layers
    inputs = tf.keras.Input(shape=(784,), name='img')
    h1 = layers.Dense(32, activation='relu')(inputs)
    h2 = layers.Dense(32, activation='relu')(h1)
    outputs = layers.Dense(10, activation='softmax')(h2)
    model = tf.keras.Model(inputs=inputs, outputs=outputs, name='mnist model')
    model.summary()
    keras.utils.plot_model(model, 'mnist_model.png', show_shapes=True)
    keras.utils.plot_model(model, 'model_info.png', show_shapes=True)

然后运行如下: 注意图的下面的那个图.

 

9 最后在jupyter 测试gpu : 

    这里https://blog.csdn.net/newstrongers/article/details/104516470的博主说测试不成功 我这里利用他的例子来测试:

    jupyter 输入 

    import tensorflow as tf
    import keras
    import pydot_ng as pydot
    import graphviz
    from tensorflow.keras import layers
    print(tf.__version__)
    print(tf.keras.__version__)
    print(keras.__version__)
    tf.config.list_physical_devices('GPU')
    a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
    b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
    c = tf.matmul(a, b)
    print(c)

运行结果如下 : 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值