不排序,两种方法找到无序数组的最大K个数

本文介绍了两种在不排序的情况下找到无序数组中最大K个数的方法,分别是基于快速排序和堆排序的扩展算法。这两种方法在保持效率的同时,避免了完整的排序过程。
摘要由CSDN通过智能技术生成

   虽然不排序,这这两种方法都源于经典的排序算法的扩展

  方式一,快速排序的扩展

/************************************************************************/
/*找到无序数组中最大的k个数						*/
/************************************************************************/
#include <iostream>
#include <stdlib.h>
#include <time.h>
using namespace std;

//找到一个位置,使得左边的数比它大,右边的数比他小
int Partion(int arr[],int start,int end)
{
	int i=start,j=end;
	int temp=arr[start];

	while(i<j)
	{
		while( (i<j) &&(arr[j] <= temp) ) j--;
		arr[i]=arr[j];
		while((i<j) && (arr[i]>=temp) ) i++;
		arr[j]=arr[i];
	}
	arr[i]=temp;

	return i;
}

void FindK(int arr[],int start,int end,int k)
{
	
	if(start<end)
	{
		int p=Partion(arr,start,end);
		if(p>k) 
		{
			FindK(arr,start,p-1,k);
		}
		else
			if(p<k)
			{
				FindK(arr,p+1,end,k-p);
			}
	}
}


int *Create(int n)
{
	int *p=new i
### 回答1: 给定两个无序数组nums1和nums2,让我们找到任意取数相加后第n小的和。我们可以使用归并排序的思想来解决这个问题。 首先,我们将nums1和nums2合并成一个有序数组merged。我们可以使用两个指针i和j分别指向nums1和nums2的开头,并从小到大比较nums1[i]和nums2[j]的大小。将较小的元素放入merged数组,并将相应的指针向后移动一位,继续比较。 当任一指针到达数组末尾时,我们就将另一个数组中剩余的元素依次放入merged数组中。最后,merged数组中的元素就是nums1和nums2两个数组合并后的有序数组。 接下来,我们可以使用双重循环来遍历merged数组找到任意取数相加后第n小的和。我们使用两个循环变量i和j分别遍历merged数组,并使用一个计数器count来记录已经找到的和的个数。 当我们找到第n小的和时,即count达到n时,我们返回merged[i]和merged[j]的和作为结果。 这个算法的时间复杂度为O(m+n),其中m和n分别是nums1和nums2的长度。在最坏情况下,当nums1和nums2都是逆序排列时,算法的时间复杂度为O(m+n)。 综上所述,我们可以使用归并排序的思想来解决华为面试题“任意取数相加第n小的和”的问题。 ### 回答2: 假设给定的两个无序数组为array1和array2,我们需要找到任取两个数字相加后的和中第n小的数。 一种解决方法是,我们可以将两个数组进行排序,然后求取所有可能的两个数字相加的和,将这些和按照升序排列。最后,我们可以直接找到排好序的和中第n个数字即可。 具体步骤如下: 1. 对array1和array2进行排序,得到排序后的数组sorted1和sorted2。 2. 创建一个新数组sums,用于保存两个数组元素相加的和。 3. 遍历sorted1中的每一个元素a,以及遍历sorted2中的每一个元素b,将它们的和a+b加入到sums数组中。 4. 对sums数组进行排序,得到排好序的和的数组sorted_sums。 5. 返回sorted_sums的第n个元素,即为我们要找的两个数相加的和中第n小的数。 需要注意的是,如果两个数组中有重复的数字,我们在计算和sums时可能会得到相同的和。在计算第n小的和的时候,我们需要判断是否要排除这些重复的和结果。 以上就是一种解决华为面试题的方法,希望对您有帮助。请注意,实际情况可能更加复杂,具体的解决方法可能会根据题目的要求而有所不同。 ### 回答3: 给定两个无序数组a和b,需要找到任意取出一个数a[i]和一个数b[j]相加后的第n小的和。 一种思路是先将数组a和数组b分别排序,然后使用双指针的方法进行求解。设指针i和指针j分别指向数组a和数组b的起始位置,初始化为0。设变量count用于记录找到的和的个数,初始化为0。 从左向右遍历数组a和数组b,每次选择a[i]和b[j]中较小的一个数。将选择的数与之找到的和进行比较,如果比之找到的和小,将当的和作为第n小的和,同时将count加1。如果count等于n,即找到了第n小的和,结束循环。否则,如果选择了a[i],则将i加1;如果选择了b[j],则将j加1。 最后,返回第n小的和。 这个方法的时间复杂度主要取决于排序的时间复杂度,设两个数组的长度分别为m和n,排序时间复杂度为O(mlogm)和O(nlogn),遍历数组的时间复杂度为O(m+n)。因此,整个算法的时间复杂度为O(mlogm + nlogn + m + n)。 另一种思路是使用小顶堆进行求解。首先,将数组a中的每个数数组b中的每个数进行相加,将得到的和存入小顶堆中。然后,依次从小顶堆中取出第n个数,即为第n小的和。 这个方法的时间复杂度主要取决于创建小顶堆的时间复杂度,设两个数组的长度分别为m和n,创建小顶堆的时间复杂度为O(mnlog(mn))。因此,整个算法的时间复杂度为O(mnlog(mn))。 以上是两种求解题目的方法,可以根据实际情况选择适合的方法进行求解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值