shouhuxianjian的专栏

最美的不是下雨天,是曾与你躲过雨的屋檐!

排序:
默认
按更新时间
按访问量

NIPS 全文下载

有些收集癖,所以这次打算把NIPS上历年的论文都下载下来。尝试通过python直接下载,不过发现很慢,所以想到,那就直接先爬取所有的下载链接,分好文件夹,然后在手动对应不同的年份将其复制到迅雷中下载(目前一共开了29期,所以手动工作还好)代码及解释如下:# -*- coding: utf-8 -*...

2017-09-24 10:35:06

阅读数:697

评论数:0

logistic回归和最大熵

回顾发现,李航的《统计学习方法》有些章节还没看完,为了记录,特意再水一文。0 - logistic分布如《统计学习方法》书上,设X是连续随机变量,X服从logistic分布是指X具有以下分布函数和密度函数: F(x)=P(X≤x)=11+e−(x−μ)/γF(x) = P(X \leq x)=\...

2017-09-11 23:16:26

阅读数:256

评论数:0

tensorflow-杂点

记录使用tensorflow中一些疑惑的小问题。FAQS:1 - 使用match_filenames_once时候用tf.global_variables_initializer初始化报错 使用tf.local_variables_initializer()初始化(原因待后续)impor...

2017-09-10 10:19:29

阅读数:203

评论数:0

KNN-笔记(1)

knn

2017-09-02 19:46:36

阅读数:229

评论数:0

KNN-笔记(2)

1 - kd TreeKD树是一种对K维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。KD树其实就是二叉树,表现为对K维空间的一个划分,构造kd树相当于不断的用垂直于坐标轴的超平面将k维空间切分,构成一系列的k维超矩形区域,即kd树就是二叉树在高维上的扩展。kd树的每个节点最后对应于一...

2017-09-02 19:39:00

阅读数:142

评论数:0

lstm-结构

lstm的结构就不重复废话了,推荐一个简单理解的: [译] 理解 LSTM 网络 这个写的不错,首先从结构上清晰明了的知道了lstm中几个门的作用及操作过程。然而却缺少了矩阵计算级别的结构介绍,也就是今天一直疑惑的,每个门到底是个单神经元还是一层神经元。后面去找原文,也就是第一篇lstm的论文...

2017-07-26 00:26:03

阅读数:546

评论数:0

关于MSCOCO_text数据集的探索

最近需要做图片中文本识别的项目,然后为了快速验证模型,所以找到了mscoco-text数据集,网站1上是这么说的: 官网是这么说的: 然而,我下下来之后: 1 - 先导入: 2 - 其中key为’imgToAnns’是图片序号对应的注释序号,却是这样的: 然后,其中具...

2017-06-14 22:00:02

阅读数:198

评论数:0

线性降维-笔记(2)

4 - MDS 5 - ICA 6 - LFA 7 - LPP

2017-04-23 10:55:42

阅读数:243

评论数:0

线性降维-笔记(1)

1 - 背景 样本在高维情形下会出现数据样本稀疏(因为样本不是均匀分布在每个维度表示的空间中),距离计算困难(欧式距离也不如人想象的那么有效),可视化困难等问题。所以不论是机器学习,还是人类理解角度,高维都是个不喜欢的话题(当然对于低维样本线性不可分而上升到高维线性可分的情形并不是这里指的情况)...

2017-04-13 23:18:21

阅读数:1003

评论数:0

adaboost-笔记(1)

1 - 加法模型加法模型,就是通过训练集不断的得到不同的分类器(回归),然后将这些分类器组合成一个新的分类器的过程。假设有NN个样本,且我们的加法模型如下: f(x)=∑m=1Mβmb(x;Ym)f(x)=\sum_{m=1}^M\beta_mb(x;\cal Y_m) 其中xx为自变量,即样...

2017-04-07 23:51:41

阅读数:449

评论数:0

高斯分布-笔记(1)

1 -单变量高斯分布单变量高斯分布概率密度函数定义为: p(x)=12πσ−−−√exp{−12(x−μσ)2}(1.1)p(x)=\frac{1}{\sqrt{2\pi\sigma}}exp\{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\} \tag{1.1} ...

2017-03-28 22:08:01

阅读数:1019

评论数:0

贝叶斯-笔记(1)

0 - 背景贝叶斯是个好东西(频率学派的不这么看),好多模型都可以从贝叶斯角度来解释,而且贝叶斯决策理论也是作为最优分类,给其他模型做错误上限什么的参照的。对于分类来说,在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。然而贝叶斯又分朴素贝叶斯、半朴素贝...

2017-03-25 00:26:00

阅读数:353

评论数:0

决策树-笔记(1)

1 - 背景决策树:是基于树结构的一种机器学习方法。其训练方法决定了它是一种有监督学习方法,且和KNN一样是一种非参数化模型。且当类数较多时,该方法具有一定的优势[1]。最流行的决策树是将空间拆分成超矩形,超矩形的边与轴平行。 ps:参数化模型,有着固定数量的参数,通常在预测阶段速度很快,而缺点...

2017-03-17 13:01:07

阅读数:561

评论数:0

SVM-笔记(1)

1 - 目的。SVM推导是从讨论最优超平面开始的,即为了得到一个能够划分不同超平面的面,即公式1: wTx+b=0(1)\begin{equation}w^Tx+b=0 \tag{1} \end{equation} 这个公式怎么来的,其实就是...

2017-03-08 17:09:44

阅读数:595

评论数:0

ElasticSearch3.0-es集群的数据入库

建表前优化这里,我采用的是elasticsearch-py与es集群进行交互。 因为有6台服务器作为es集群,如果只是针对一台进行录入,显然效率不高,所以可以同时对所有节点进行录入。 首先按照官网的优化介绍,有几个设置参数是必须在创建表之前就设定的,一旦录入数据之后,这几个参数就没法修改,并参...

2017-03-08 12:39:35

阅读数:932

评论数:0

spark1.0-集群搭建

背景机器环境:部门有10台服务器,每台配置为:intel E5-2690 v3 48核,775Gb内存。搭建了hdfs,hive,spark,并且spark的资源调度方案为yarn模式。因为资源分配有限。故而在自己组所拥有的6台服务器上,手动搭建spark集群,每台配置为:intel E5-267...

2017-02-17 14:22:47

阅读数:545

评论数:0

scala2.0-杂记

关于类参数的困惑对于scala来说,其默认就有个主构造器,一旦类实例化,就会自动调用该主构造器class test(n:Int){ println(n) override def toString = n def printt() {println(f"class param...

2017-02-14 09:51:30

阅读数:230

评论数:0

Python3.2-re模块之常用正则记录

python的re模块是个很好的模块,这里简单记录下自己编写的几个有用的正则:         1:邮箱匹配:            gReMailbox = re.compile(r'([\w\.\-+]+@[\w\-]+\.[\w\-]+(?:\.\w+)?)')         2: 手机号...

2016-10-26 10:48:48

阅读数:304

评论数:0

shell杂记

(本文将持续更新)从2015年9月25日开始正式学习linux类的东西。书籍入门:UNIX.Shell编程24学时教程(中文版)、Linux与UNIX Shell编程指南、shell十三问、LINUX SHELL脚本攻略、Shell脚本专家指南。对于变量替换来说,就有点让人总是搞混掉。主要有8个:...

2015-10-30 12:22:01

阅读数:387

评论数:0

linux echo设置颜色

echo要变换颜色的时候,要使用参数-e 格式: echo -e “\033[字背景颜色;字体颜色m字符串\033[0m” 例如: echo -e “\033[41;36m something here \033[0m” 其中41的位置代表底色, 36的位置是代表字的颜色注: 1、字背...

2015-10-10 22:25:53

阅读数:346

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭