拉格朗日对偶性

拉格朗日对偶性

该方法是用于解决约束最优化问题的常用方法。

1.原始问题

假设 f ( x ) , c i ( x ) , h j ( x ) f(x),c_i(x),h_j(x) f(x),ci(x),hj(x)是定义在 R n R^n Rn升的连续可微函数:
(1) min ⁡ x ∈ R n f ( x ) s . t . c i ( x ) ≤ 0 , i = 1 , 2 , ​ ⋯   , k h j ( x ) = 0 , j = 1 , 2 , ​ ⋯   , l \begin{aligned} \tag{1} &\min_{x\in R_n} f(x) \\ s.t.\quad &c_i(x) \le 0 ,\quad i=1,2,\dotsi,k\\ &h_j(x)=0, \quad j=1,2,\dotsi,l \end{aligned} s.t.xRnminf(x)ci(x)0,i=1,2,,khj(x)=0,j=1,2,,l(1)
上式我们称之为原始问题。
为了解决以上问题我们引入广义的拉个朗日函数:
(2) L ( x , α , β ) = f ( x ) + ∑ i = 1 k α i c i ( x ) + ∑ j = 1 l β j h j ( x ) \tag{2} L(x,\alpha,\beta)=f(x)+\sum_{i=1}^k{\alpha_ic_i(x)}+\sum_{j=1}^l{\beta_jh_j(x)} L(x,α,β)=f(x)+i=1kαici(x)+j=1lβjhj(x)(2)
x ∈ R n , α i 和 β j x\in R^n,\alpha_i和\beta_j xRn,αiβj是拉格朗日系数, α i ≥ 0 \alpha_i \ge 0 αi0。这样可以得到关于x的函数:
(3) θ P ( x ) = max ⁡ α , β : α ≥ 0 L ( x , α , β ) \tag{3} \theta_P(x)=\max_{\alpha,\beta:\alpha \ge 0}L(x,\alpha,\beta) θP(x)=α,β:α0maxL(x,α,β)(3)
下标P代表原问题。很显然上式的值为:
(4) θ P ( x ) = { f ( x ) , x满足原始问题约束条件 + ∞ , 其他 \tag{4} \theta_P(x) = \begin{cases} f(x), &\text{x满足原始问题约束条件} \\ +\infin,&\text{其他} \end{cases} θP(x)={f(x),+,x满足原始问题约束条件其他(4)
所以原始问题等价于:
(5) p ∗ = min ⁡ x θ P ( x ) = min ⁡ x max ⁡ α , β : α ≥ 0 L ( x , α , β ) \tag{5} p^*=\min_x\theta_P(x)=\min_x\max_{\alpha,\beta:\alpha \ge 0}L(x,\alpha,\beta) p=xminθP(x)=xminα,β:α0maxL(x,α,β)(5)
我们称之为拉格朗日函数的极小极大问题。

2.对偶问题

原始问题的对偶问题定义为:
(6) d ∗ = max ⁡ α , β : α ≥ 0 θ D ( x ) = max ⁡ α , β : α ≥ 0 min ⁡ x L ( x , α , β ) \tag{6} d^*=\max_{\alpha,\beta:\alpha \ge 0}\theta_D(x)=\max_{\alpha,\beta:\alpha \ge 0}\min_xL(x,\alpha,\beta) d=α,β:α0maxθD(x)=α,β:α0maxxminL(x,α,β)(6)
我们称之为拉格朗日函数的极大极小问题。

3.原始问题和对偶问题的关系

定理1:若原始问题和对偶问题都有最优值,则有:

(7) d ∗ ≤ p ∗ \tag{7} d^*\le p^* dp(7)

推论:设 x ∗ 和 α ∗ , β ∗ x^*和\alpha^*,\beta^* xα,β分别是原始问题和对偶问题的可行解 d ∗ = p ∗ d^* = p^* d=p,则 x ∗ 和 α ∗ , β ∗ x^*和\alpha^*,\beta^* xα,β分别是原始问题和对偶问题最优解。

很显然我们此时可以用解对偶问题的方式,求解原问题。

定理2:假设 f ( x ) 和 c i ( x ) f(x)和c_i(x) f(x)ci(x)是凸函数, h j ( x ) h_j(x) hj(x)是仿射函数(最高次项为1的函数);并且假设不等式约束 c i ( x ) c_i(x) ci(x)是严格可行的,即存在x,对于所有i有 c i ( x ) &lt; 0 c_i(x)&lt;0 ci(x)<0,则存在 x ∗ 和 α ∗ , β ∗ x^*和\alpha^*,\beta^* xα,β分别是原始问题和对偶问题的解,并且:

(8) d ∗ = p ∗ = L ( x , α , β ) \tag{8} d^* = p^* = L(x,\alpha,\beta) d=p=L(x,α,β)(8)

定理3:假设 f ( x ) 和 c i ( x ) f(x)和c_i(x) f(x)ci(x)是凸函数, h j ( x ) h_j(x) hj(x)是仿射函数;并且假设不等式约束 c i ( x ) c_i(x) ci(x)是严格可行的,则 x ∗ 和 α ∗ , β ∗ x^*和\alpha^*,\beta^* xα,β分别是原始问题和对偶问题的解充分必要条件是 x ∗ , α ∗ , β ∗ x^*,\alpha^*,\beta^* xα,β满足下面的Karush-Kuhn-Tucker(KKT)条件:

(9) ∇ x L ( x ∗ , α ∗ , β ∗ ) = 0 α i ∗ c i ( x ∗ ) = 0 c i ( x ∗ ) ≤ 0 α i ∗ ≥ 0 h j ( x ∗ ) = 0 \tag{9} \begin{aligned} \nabla_xL(x^*,\alpha^*,\beta^*)&amp;=0 \\ \alpha_i^*c_i(x^*)&amp;=0\\ c_i(x^*)&amp;\le0\\ \alpha_i^*&amp;\ge0\\ h_j(x^*)&amp;=0 \end{aligned} xL(x,α,β)αici(x)ci(x)αihj(x)=0=000=0(9)
特别指出:若 α i ∗ &gt; 0 \alpha_i^*&gt;0 αi>0,则c_i(x^*)=0。所以我们称 α i ∗ ≥ 0 \alpha_i^*\ge0 αi0是KKT的对偶互补条件。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值