视频在整个互联网流量的占比每年在高速增长,为降低视频存储成本和数据传输通道的负载,视频压缩标准及算法在不断积极开发和改进。视频质量的评估在其中也起着至关重要的作用,尽管已经发展出了大量视频质量评估方法,但普遍接受度最高、最知名的评价方法还是经典的 PSNR、SSIM 以及 VMAF。
本文将浅谈一下这几类评价方法的概念,并将结合微帧在日常实验中所得的经验,重点聊一聊 PSNR avg.MSE 与 PSNR avg.log,谁更胜一筹?以及 VMAF 的“喜”与“忧”。
PSNR(峰值信噪比)峰值信号的能量与噪声的平均能量之比,本质的是比较两张图像像素值差异,用途较广,目前仍作为对照其他指标的基线。PSNR 的单位是 dB,数值越大表示失真越小。
两个m×n单色图像 I 和K, I 为一无噪声的原始图像,K为 I 的噪声近似(例: I 为未压缩的原始图像,K为 I 经过压缩后的图像)
其中,MAX是表示图像点颜色的最大数值,如果每个采样点用 8 位表示,那么就是 255。
PSNR avg.MSE 与 PSNR avg.log,谁更胜一筹?
PSNR avg.MSE:当聚合整个视频的逐帧分数时,首先计算 MSE 的算术平均值,然后取对数。