文章目录
HDFS是用来统一管理分布在集群上的文件的系统。
HDFS是Apache Hadoop项目的一个子项目,Hadoop适合存储大型数据,其中就是使用HDFS作为存储系统。HDFS使用多台计算机来存储文件,并提供统一的访问接口,可以像访问普通文件系统一样访问分布式文件系统。
适合应用场景
1、对延时没有要求
2、流式访问,即一次写入多次读取。经常从数据源生成或者拷贝一次,然后用其做很多分析工作
3、Hadoop不需要高成本的机器
4、Hadoop可以提供很高的容错性,一个机器挂了,其他的副本可以补充这些数据
5、为数据提供所需的扩展能力(增加机器数量,对集群做横向扩展)
不适合应用场景
1、不适合毫秒级应用,牺牲延时
2、不适合存放大量小文件,文件的元数据存放在NameNode的内存中(一个文件会有一条元数据<地址、容量信息等>),整个文件系统的文件数量受限于namenode的内存大小。一个元数据大概150字节,100万个文件大概需要300M内存。。。。数亿级别难以支撑
##可以整合成大文件
3、不支持多方读写,不支持任意修改。
HDFS架构
HDFS是一个主从(Master/Salve)体系结构
由四部分组成:HDFS Client(客户端)、NameNode(主节点)、DataNode(从节点)、Secondary NameNode(对NameNode起辅助作用)。
1、Client客户端
- 文件上传到HDFS的时候,对文件切片,切分成一个个block,然后存储。
- 与NameNode进行交互,获取文件的位置信息。
- 与DataNode进行交互,读取或写入数据。(真实数据存储在DataNode上)
- 提供一些命令来访问和管理客户端。 (比如启动关闭客户端)
2、NameNode :一个文件管理者
- 管理HDFS的名称空间
- 管理数据块的映射信息
- 配置副本策略(被拆分的数据文件被拆分了几块呢?存放在哪些机器上呢?)
- 处理客户端的读写请求
3、DateNode:就是Savle,执行实际读写的操作
- 存储实际的数据块
- 执行数据的读写
4、Secondary NameNode 辅助NameNode
- 辅助NameNode分担工作量
- 并非热辅助,当NameNode挂掉的时候,不能马上替换NameNode工作
- 可辅助恢复NameNode
NameNode 和 DataNode
NameNode的作用
- NameNode在内存中存储整个文件系统的名称、空间、及文件数据块的地址映射
- 整个HDFS文件系统可以存储的文件数受限于NAMENode的内存大小。
1、持久化机制。NameNode元数据信息放在内存中,在fsimage镜像文件备份,edits存放日志文件,如果文件服务器重启,可以通过这两个文件来恢复元数据信息。
2、NameNode不参与真实的读写
3、根据自己的策略机制选择文件块存放在哪个主机上(机架感知)
4、心跳机制,DataNode向NameNode发送心跳信号,如果NameNode没有感知到原有的数据信号,NameNode可能会复制一分原有的相同副本到其DataNode上。
DataNode的作用
- 以数据块方式存储HDFS文件
- 响应客户端读写请求
- 周期性想NameNode汇报心跳信息
- 周期性想NameNode汇报数据库信息(有哪些块要汇报)
- 周期性想NameNode汇报缓存数据块信息(如果有一个主机的副本要经常被访问,那么就会在他的主机上开辟一个块缓存,用来存放其数据块信息,提高响应速度)
HDFS的副本机制 和 机架感知
副本可以增加数据的容错性,假如一台主机宕机,其他主机上可以通过他的副本来恢复,一个block可以通过配置来设置生成多少个副本。
机架感知:一个block存放在一个机架的一台主机上,那么会在这机架内挑一台主机存放副本,并且也会在另一个机架内的一个主机内存储这个数据块副本
,默认保存三份!!!
HDFS 默认 BlockSize 是128M;
这俩块主要是更好地存储数据,提供HDFS的容错能力
block、packet与chunk
在DFSClient写HDFS的过程中,有三个需要搞清楚的单位:block、packet与chunk;
block是最大的一个单位,它是最终存储于DataNode上的数据粒度,由dfs.block.size参数决定,默认是128M;注:这个参数由客户端配置决定;
packet是中等的一个单位,它是数据由DFSClient流向DataNode的粒度,以dfs.write.packet.size参数为参考值,默认是64K;注:这个参数为参考值,是指真正在进行数据传输时,会以它为基准进行调整,调整的原因是一个packet有特定的结构,调整的目标是这个packet的大小刚好包含结构中的所有成员,同时也保证写到DataNode后当前block的大小不超过设定值;
chunk是最小的一个单位,它是DFSClient到DataNode数据传输中进行数据校验的粒度,由io.bytes.per.checksum参数决定,默认是512B;
注:事实上一个chunk还包含4B的校验值,因而chunk写入packet时是516B;数据与检验值的比值为128:1,所以对于一个128M的block会有一个1M的校验文件与之对应;
hdfs的命令行的使用
题目
HDFS的存储机制(☆☆☆☆☆)
HDFS存储机制,包括HDFS的写入过程和读取过程两个部分
-写入
1)客户端向namenode请求上传文件,namenode检查目标文件是否已存在,父目录是否存在。
2)namenode返回是否可以上传。
3)客户端请求第一个 block上传到哪几个datanode服务器上。
4)namenode返回3个datanode节点,分别为dn1、dn2、dn3。
5)客户端请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成
6)dn1、dn2、dn3逐级应答客户端
7)客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答
8)当一个block传输完成之后,客户端再次请求namenode上传第二个block的服务器。(重复执行3-7步)
-读取
1)客户端向namenode请求下载文件,namenode通过查询元数据,找到文件块所在的datanode地址。
2)挑选一台datanode(就近原则,然后随机)服务器,请求读取数据。
3)datanode开始传输数据给客户端(从磁盘里面读取数据放入流,以packet为单位来做校验)。
4)客户端以packet为单位接收,先在本地缓存,然后写入目标文件。
SecondaryNameNode工作机制(☆☆☆☆☆)
1)第一阶段:namenode启动
(1)第一次启动namenode格式化后,创建fsimage和edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改的请求
(3) namenode记录操作日志,更新滚动日志。
(4)namenode在内存中对数据进行增删改查
2)第二阶段:Secondary NameNode工作
(1)SecondaryNameNode询问namenode是否需要checkpoint。直接带回namenode是否检查结果。
(2)SecondaryNameNode请求执行checkpoint。
(3)namenode滚动正在写的edits日志
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode
(5)SecondaryNameNode加载编辑日志和镜像文件到内存,并合并。
(6)生成新的镜像文件fsimage.chkpoint
(7)拷贝fsimage.chkpoint到namenode
(8)namenode将fsimage.chkpoint重新命名成fsimage
1.2.10 NameNode与SecondaryNameNode 的区别与联系?(☆☆☆☆☆)
1)机制流程同上;
2)区别
(1)NameNode负责管理整个文件系统的元数据,以及每一个路径(文件)所对应的数据块信息。
(2)SecondaryNameNode主要用于定期合并命名空间镜像和命名空间镜像的编辑日志。
3)联系:
(1)SecondaryNameNode中保存了一份和namenode一致的镜像文件(fsimage)和编辑日志(edits)。
(2)在主namenode发生故障时(假设没有及时备份数据),可以从SecondaryNameNode恢复数据。
hadoop节点动态上线下线怎么操作?
1)节点上线操作:
当要新上线数据节点的时候,需要把数据节点的名字追加在 dfs.hosts 文件中
(1)关闭新增节点的防火墙
(2)在 NameNode 节点的 hosts 文件中加入新增数据节点的 hostname
(3)在每个新增数据节点的 hosts 文件中加入 NameNode 的 hostname
(4)在 NameNode 节点上增加新增节点的 SSH 免密码登录的操作
(5)在 NameNode 节点上的 dfs.hosts 中追加上新增节点的 hostname,
(6)在其他节点上执行刷新操作:hdfs dfsadmin -refreshNodes
(7)在 NameNode 节点上,更改 slaves 文件,将要上线的数据节点 hostname 追加到 slaves 文件中
(8)启动 DataNode 节点
(9)查看 NameNode 的监控页面看是否有新增加的节点
2)节点下线操作:
(1)修改/conf/hdfs-site.xml 文件
(2)确定需要下线的机器,dfs.osts.exclude 文件中配置好需要下架的机器,这个是阻止下架的机器去连接 NameNode。
(3)配置完成之后进行配置的刷新操作./bin/hadoop dfsadmin -refreshNodes,这个操作的作用是在后台进行 block 块的移动。
(4)当执行三的命令完成之后,需要下架的机器就可以关闭了,可以查看现在集群上连接的节点,正在执行 Decommission,会显示:Decommission Status : Decommission in progress 执行完毕后,会显示:Decommission Status :Decommissioned
(5)机器下线完毕,将他们从excludes 文件中移除。
hadoop的块大小,从哪个版本开始是128M
Hadoop1.x都是64M,hadoop2.x开始都是128M。
写出你常用的hdfs命令
hdfs原理,以及各个模块的职责
哪个程序同城与nn在一个节点启动?哪个程序和DN在一个节点?如果一个节点脱离了集群应该怎么处理?
。。。。。。。
参考学习视频:
https://www.bilibili.com/video/BV1154y1U73k?from=search&seid=15979263450491874199