前天推送一篇干货 | 50题带你入门Python数据分析(上),今天带来下篇。
开始正文前,还是再提醒一下大家,当当年中庆的促销活动不要错过, 满减后可享再优惠。满减的力度相当于打对折,减完后用优惠码再减30元,相当于4折购书。扫下方菊花码进入
结算时输入优惠码3PAZJU,折后满150就能再减30
25
显示列唯一值
df[''].unique() ⚠️这里显示具体的唯一值
26
显示列唯一值个数
df[''].nunique() ⚠️这里显示的是唯一值个数
27
返回列最大/小值的索引
df[''].idxmax()
df[''].idxmin()
28
返回列前几个大/小的元素值
df[''].nlargest(这里指定几个)
df[''].nsmallest(这里指定几个)
29
列的值进行截断
df[''].clip(min,max)
#这里将小于min的值变成min,max同理
30
列的值进行替换
df[''].replace("旧的","新的")
df.replace('列':""旧的","新的")
31
利用索引进行排序
df.set_index('列')
32
Pandas画折线图
df.plot(x='', y='')
plt.show()
33
Pandas画条形图
df.plot(x='', y='',kind='bar')
plt.show()
34
Pandas画水平条形图
df.plot(x='', y=['',''],kind='barh')
plt.show()
35
Pandas画散点图
df.plot(x='', y='',kind='scatter')
plt.show()
36
Pandas画饼图
df.index=[] #重新定义显示的索引
df.plot(x='', y='',kind='pie',legend=False) #设置不显示图例
plt.show()
37
Pandas画箱型图
df.plot(y='',kind='box') #箱型图非常有利于看数据分布
plt.show()
38
Pandas画直方图
df.plot(y='',kind='hist')
plt.show()
39
Pandas画多个图在同一张画布
df.plot(kind='',
y=['',''],
subplots=True, #多子图并存
layout = (1,2), #子图排列一行二列
title='',
figsize(10,5))
plt.show()
40
业务指标:计算月均消费次数
这里我们以朝阳医院销售数据集为例:
月均消费次数=总消费次数 / 月份数
总消费次数:同一天内,同一个人发生的所有消费算作一次消费。这里我们根据列名(销售时间,社区卡号)结合,如果这两个列值同时相同,只保留1条,将重复的数据删除
月份数:数据已经按照销售时间进行排序,只需将最后的数据与第一条数据相减就可换算出月份数
#总消费次数计算
kpDf = salesDf.drop_duplicates(subset=['销售时间','社保卡号'])
total = kpDf.shape[0]
print('总消费次数为:',total)
#月份数计算
startDay = salesDf.loc[0,'销售时间']
print('开始日期:',startDay)
endDay = salesDf.loc[salesDf.shape[0]-1,'销售时间']
print('结束日期:',endDay)
monthCount = (endDay - startDay).days//30
print('月份数:',monthCount)
#业务指标:月均消费次数=总消费次数 / 月份数
kpi1 = total / monthCount
print('业务指标1:月均消费次数=',kpi1)
41
业务指标:计算月均消费金额
月均消费金额 = 总消费金额 / 月份数
totalMoney = salesDf['实收金额'].sum()
kpi2 = totalMoney / monthCount
print('业务指标2:月平均消费金额=',kpi2)
42
业务指标:计算客单价
客单价=总消费金额 / 总消费次数
kpi3 = kpi2 / kpi1
print('业务指标3:客单价=',kpi3)
下面介绍有趣且实用的分析模型
43
RFM模型
首先介绍一下什么是RFM模型:RFM模型是以用户的实际购买行为数据,将用户群体进行分类,其中
R(Recency):表示客户最近一次购买的时间距离现在有多远
F(Frequency):表示用用户在定义时间段内购买产品或服务的次数
M(Monetary):表示用户在定义时间段内购买产品或服务的金额 然后再更具R、F、M指标进行客户的细致分类:包括重要价值客户、重要发展客户、重要保持客户、重要挽留客户、一般价值客户、一般发展客户、一般保持客户、一般挽留客户等八类用户。
再根据模型提出以下问题:1、谁是你最好的客户 2、有哪些客户在流逝的边缘 3、有哪些客户能转化能为公司创造更多的价值 4、你必须保留哪些客户 5、谁是你的忠实客户 6、哪些客户有最大的转化率和可能性
可以查看我的这篇文章:实战 | 航空公司客户价值分析-LRFCM模型
44
AARRR模型
AARRR是Acquisition、Activation、Retention、Revenue、Refer,这个五个单词的缩写,分别对应用户生命周期中的5个重要环节。
45
SWOT分析
SWOT(企业战略分析方法)指SWOT分析法。SWOT分析,即基于内外部竞争环境和竞争条件下的态势分析,就是将与研究对象密切相关的各种主要内部优势、劣势百和外部的机会和威胁等。
可以查看我的这篇文章:
产品报告|利用SWOT模型分析趣头条APP
46
STAR法则
STAR法则,即为Situation Target Action Result的缩写,具体含义是:
Situation: 事情是在什么情况下发生
Target 你是如何明确你的目标的
Action: 针对这样的情况分析,你采用了什么行动方式
Result: 结果怎样,在这样的情况下你学习到了什么
简而言之,STAR法则,就是一种讲述自己故事的方式,或者说,是一个清晰、条理的作文模板。不管是什么,合理熟练运用此法则,可以轻松的对面试官描述事物的逻辑方式,表现出自己分析阐述问题的清晰性、条理性和逻辑性。
47
HMW分析法
HMW是什么?
How Might We = 我们可以如何 = 有什么办法
找方向:HMW = 解决这个问题的方向,打开思考的困局
拓展思路:把一个小问题大幅拓展,把问题想透
头脑风暴:暂时不需要考虑具体的方案,让头脑风暴更高效
创新点:让每个吐槽都可能被变成创新点
HMW什么时候用?
头脑风暴前:解决头脑风暴效率的问题
分析用户反馈:在碰到用户反馈,马上用HMW分析
和领导PK:用HMW对付领导是一个好办法
48
六顶思考帽
推荐阅读:我听过关于“六顶思考帽”最通俗易懂的解释
49
紧急重要四象限
这对于我们平时数据分析或者安排工作是都很有帮助:
50
复利思维模型
从下面两组公式你看出了什么?
不管做什么工作,什么身份,只要你每天坚持比别人多做一点点,人生的积累将会大不同。而如果你每天都懈怠一点点,你有的也几乎会全部被剥夺。奥利给🍔