Yolov5实践:以中医智能舌诊系统(舌象分类)为例(三)----系统可视化窗口

一、项目窗口展示

 原代码和数据集地址:https://m.tb.cn/h.g8V294l?tk=ssHf3cwymML 

二、窗口可视化(window.py)

运行window.py即可出现上述可视化窗口

在代码第83行

self.model = self.model_load(weights="runs/train/exp2/weights/best.pt",
                             device=self.device)  # todo 指明模型加载的位置的设备

weights =“” :这里需要改成你的模型权重路径,这样就可以通过图形化界面,对新的图片进行舌诊预测和分割。

该图形化界面还有一个视频舌诊功能

只要点击下述按钮就可进行检测,甚至可以用电脑摄像头检测。

三、训练集

原代码和数据集地址:https://m.tb.cn/h.g8V294l?tk=ssHf3cwymML 

四、系列目录

Yolov5实践:以中医智能舌诊系统(舌象分类)为例(一)--数据标注介绍-CSDN博客

Yolov5实践:以中医智能舌诊系统(舌象分类)为例(二)----训练和测试-CSDN博客

【资源介绍】 基于深度学习的舌苔识别检测鉴定系统python源码(带GUI界面)+模型+论文报告.zip 1 课题背景 2 1.1 研究背景及意义 2 1.2 舌苔检测研究现状 2 1.3 课题任务内容 2 1.4 本章小结 3 2 机器学习相关理论 4 2.1 机器学习的现状与发展 4 2.2 深度神经网络的结构和概念 4 2.2.1 神经网络模型 5 2.2.2 卷积神经网络 5 2.3 神经网络的训练 7 2.4 本章小结 7 3 舌苔检测需求分析 8 3.1 可行性分析 8 3.1.1 技术可行性 8 3.1.2 经济可行性 8 3.1.3 文化可行性 8 3.1.4 社会可行性 8 3.2 功能性需求 8 3.2.1 数据集构建 8 3.2.2 舌苔检测 9 3.2.3 体质辨识 9 3.3 非功能性需求 9 3.4 本章小结 9 4 舌象数据集构建与扩充 10 4.1 舌象图片数据的标注分类 10 4.2 使用图像增强扩充数据集 10 4.3 生成对抗网络 12 4.3.1 生成对抗网络相关概念 12 4.3.2 DCGAN生成舌象图片 13 4.4 本章小结 15 5 舌苔检测网络设计与实现 17 5.1 网络模型介绍 17 5.2 网络模型分析 17 5.2.1 网络主要结构 18 5.2.2 网络功能模块 18 5.3 网络模型搭建及功能的实现 19 5.3.1 网络模型模块 20 5.3.2 数据模块 20 5.3.3 训练模块 20 5.3.4 检测模块 21 5.3.5 体质辨识界面模块 21 5.4 本章小结 22 6 舌苔检测实验分析 23 6.1 实验数据集 23 6.2 数据图像预处理 23 6.2.1 图像增强 23 6.2.2 图像大小处理 23 6.2.3 图像归一化 24 6.3 实验参数 25 6.3.1 学习率 25 6.3.2 训练迭代次数 26 6.3.3 训练批大小 26 6.4 实验评估指标 26 6.4.1 损失函数 27 6.4.2 准确率 27 6.5 对比实验 27 6.5.1 预训练参数对比实验 28 6.5.2 图像预处理对比实验 29 6.5.3 学习率对比实验 32 6.6 舌苔检测训练数据 34 6.7 体质辨识功能展示 35 【说明】 该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 欢迎下载交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值