leetcode(4.寻找两个正序数组的中位数)【困难】官解——二分查找

一、题目

给定两个大小分别为 m 和 n 的正序(从小到大)数组nums1和nums2。请你找出并返回这两个正序数组的中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。
示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106

二、题解

不需要合并两个有序数组,只要找到中位数的位置即可。
由于两个数组的长度已知,因此中位数对应的两个数组的下标之和也是已知的。
维护两个指针,初始时分别指向两个数组的下标0的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。
根据中位数的定义,

  • m + n m+n m+n是奇数时,中位数是两个有序数组中的第 ( m + n ) / 2 (m+n)/2 (m+n)/2个元素,
  • m + n m+n m+n是偶数时,中位数是两个有序数组中的第 ( m + n ) / 2 (m+n)/2 (m+n)/2个元素和第 ( m + n ) / 2 + 1 (m+n)/2+1 (m+n)/2+1个元素的平均值。

因此,这道题可以转化成寻找两个有序数组中的第 k k k小的数,其中 k k k ( m + n ) / 2 (m+n)/2 (m+n)/2 ( m + n ) / 2 + 1 (m+n)/2+1 (m+n)/2+1

假设两个有序数组分别是A和B。要找到第 k k k个元素,我们可以比较 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21] B [ k / 2 − 1 ] B_{[k/2−1]} B[k/21],其中 / 表示整数除法。由于 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21] B [ k / 2 − 1 ] B_{[k/2−1]} B[k/21]的前面分别有 A [ 0.. k / 2 − 2 ] A_{[0..k/2−2]} A[0..k/22] B [ 0.. k / 2 − 2 ] B_{[0..k/2−2]} B[0..k/22],即: k / 2 − 1 k/2−1 k/21个元素,对于 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21] B [ k / 2 − 1 ] B_{[k/2−1]} B[k/21]中的较小值,最多只会有 ( k / 2 − 1 ) + ( k / 2 − 1 ) ≤ k − 2 (k/2−1)+(k/2−1)≤k−2 (k/21)+(k/21)k2 个元素比它小,那么它就不能是第 k k k小的数了。

因此我们可以归纳出三种情况:

  • 如果 A [ k / 2 − 1 ] < B [ k / 2 − 1 ] A_{[k/2−1]}<B_{[k/2−1]} A[k/21]<B[k/21],则比 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21]小的数最多只有 A A A的前 k / 2 − 1 k/2−1 k/21个数和 B B B的前 k / 2 − 1 k/2−1 k/21个数,即比 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21] 小的数最多只有 k − 2 k−2 k2个,因此 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21]不可能是第 k k k个数, A [ 0 ] A_{[0]} A[0] A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21]也都不可能是第 k k k个数,可以全部排除。
  • 如果 A [ k / 2 − 1 ] > B [ k / 2 − 1 ] A_{[k/2−1]}>B_{[k/2−1]} A[k/21]>B[k/21],则可以排除 B [ 0 ] B_{[0]} B[0] B [ k / 2 − 1 ] B_{[k/2−1]} B[k/21]
  • 如果 A [ k / 2 − 1 ] = B [ k / 2 − 1 ] A_{[k/2−1]}=B_{[k/2−1]} A[k/21]=B[k/21],则可以归入第一种情况处理。

在这里插入图片描述

可以看到,比较 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21] B [ k / 2 − 1 ] B_{[k/2−1]} B[k/21]之后,可以排除 k / 2 k/2 k/2个不可能是第 k k k小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k k k 的值,这是因为我们排除的数都不大于第 k k k 小的数。

有以下三种情况需要特殊处理:

  • 如果 A [ k / 2 − 1 ] A_{[k/2−1]} A[k/21]或者 B [ k / 2 − 1 ] B_{[k/2−1]} B[k/21]越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k k k的值,而不能直接将 k k k减去 k / 2 k/2 k/2
  • 如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k k k小的元素。
  • 如果 k = 1 k=1 k=1,我们只要返回两个数组首元素的最小值即可。

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9

两个有序数组的长度分别是4和9,长度之和是13,中位数是两个有序数组中的第7个元素,因此需要找到第 k = 7 k=7 k=7个元素。
比较两个有序数组中下标为 k / 2 − 1 = 2 k/2−1=2 k/21=2的数,即 A [ 2 ] A_{[2]} A[2] B [ 2 ] B_{[2]} B[2],如下面所示:
在这里插入图片描述

由于 A [ 2 ] > B [ 2 ] A_{[2]}>B_{[2]} A[2]>B[2],因此排除 B [ 0 ] B_{[0]} B[0] B [ 2 ] B_{[2]} B[2],即数组B的下标偏移(offset)变为3,同时更新k的值: k = k − k / 2 = 4 k=k−k/2=4 k=kk/2=4

下一步寻找,比较两个有序数组中下标为 k / 2 − 1 = 1 k/2−1=1 k/21=1的数,即 A [ 1 ] A_{[1]} A[1] B [ 4 ] B_{[4]} B[4],如下面所示,其中方括号部分表示已经被排除的数。
在这里插入图片描述

由于 A [ 1 ] < B [ 4 ] A_{[1]}<B_{[4]} A[1]<B[4],因此排除 A [ 0 ] A_{[0]} A[0] A [ 1 ] A_{[1]} A[1],即数组A的下标偏移变为2,同时更新k的值: k = k − k / 2 = 2 k=k−k/2=2 k=kk/2=2

下一步寻找,比较两个有序数组中下标为 k / 2 − 1 = 0 k/2−1=0 k/21=0的数,即比较 A [ 2 ] A_{[2]} A[2] B [ 3 ] B_{[3]} B[3],如下面所示,其中方括号部分表示已经被排除的数。
在这里插入图片描述
由于 A [ 2 ] = B [ 3 ] A_{[2]}=B_{[3]} A[2]=B[3],根据之前的规则,排除A中的元素,因此排除 A [ 2 ] A_{[2]} A[2],即数组 A的下标偏移变为3,同时更新k的值: k = k − k / 2 = 1 k=k−k/2=1 k=kk/2=1
由于k的值变成1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第k个数,由于 A [ 3 ] > B [ 3 ] A_{[3]}>B_{[3]} A[3]>B[3],因此第k个数是 B [ 3 ] = 4 B_{[3]}=4 B[3]=4
在这里插入图片描述

三、代码

   public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        // java版官解
        int len1 = nums1.length, len2 = nums2.length;
        int totalLength = len1 + len2;
        if (totalLength % 2 == 1) {
            int midIndex = totalLength / 2;
            double median = getKthElement(nums1, nums2, midIndex + 1);
            return median;
        } else {
            int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
            double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
            return median;
        }
    }

    public int getKthElement(int[] nums1, int[] nums2, int k) {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */

        int length1 = nums1.length, length2 = nums2.length;
        int index1 = 0, index2 = 0;
        int kthElement = 0;

        while (true) {
            // 边界情况
            if (index1 == length1) {
                return nums2[index2 + k - 1];
            }
            if (index2 == length2) {
                return nums1[index1 + k - 1];
            }
            if (k == 1) {
                return Math.min(nums1[index1], nums2[index2]);
            }

            // 正常情况
            int half = k / 2;  // 每一个数组拿中位数角标的一半
            int newIndex1 = Math.min(index1 + half, length1) - 1;
            int newIndex2 = Math.min(index2 + half, length2) - 1;
            int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
            if (pivot1 <= pivot2) {
                k -= (newIndex1 - index1 + 1);
                index1 = newIndex1 + 1;
            } else {
                k -= (newIndex2 - index2 + 1);
                index2 = newIndex2 + 1;
            }
        }
    }

四、结果

在这里插入图片描述

五、说明

  本文章仅用于记录个人做题记录
  由于本人是个小菜鸡(实锤),题目解法并非最优,且解题过程中参考(抄袭)各大佬解题方法,望见谅。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值