视觉SLAM14讲学习笔记-ch3

 本博客主要记录学习高翔老师视觉SLAM14讲的总结笔记,若有总结不对的地方,欢迎大家与我讨论。

一、向量内外积

内积:

\vec{a} \cdot \vec{b}=a^{T}\cdot b=\sum_{i=1}^{3} a_{i}b_{i}=\left | a \right | \left | b \right |cos\left \langle a,b \right \rangle

外积:

\vec{a} \times \vec{b}=a^{\wedge }\cdot b=\begin{bmatrix} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{bmatrix}\cdot b

 二、欧式变换

旋转矩阵是特殊正交群,R^{-1}与R^{T}相同,都表示相反旋转,即:

 SO(n)=\left \{ R\in \Re^{n\times n}\mid R^{T}R=I, det(R)=1 \right \}

 旋转与平移向量:

a_{1}=R_{12}a_{2}+t_{12} 

 三、变换矩阵与齐次坐标

用一个矩阵表示旋转和平移,即为变换矩阵,同时向量坐标也应转换为齐次坐标

 T=\begin{bmatrix} R & t\\ 0 & 1 \end{bmatrix}\Rightarrow \begin{bmatrix} a' \\ 1 \end{bmatrix} = T\begin{bmatrix} a\\ 1 \end{bmatrix}

 变换矩阵也称为特殊欧式群,即

SE(3)=\left \{ T=\begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}\in \Re^{4\times 4}\mid R\in SO(3),t\in \Re^{3} \right \}

 变换矩阵的逆矩阵为:

 T^{-1}=\begin{bmatrix} R^{T} & -R^{T}t \\ 0^{T} & 1 \end{bmatrix}

 四、旋转向量

旋转向量又称角轴,它由一个旋转轴和一个旋转角来刻画,即

\vec{n}\cdot \theta

 罗德里格斯公式建立起旋转向量和旋转矩阵之间的关系,由旋转向量到旋转矩阵为:

 R=\cos \theta I+(1-\cos \theta )nn^{T}+\sin\theta n^{\wedge }

由旋转矩阵到旋转向量为:

 \begin{cases} tr(R)=1+2\cos \theta \Rightarrow \theta = \arccos \frac{tr(R)-1}{2} \\ Rn=n \end{cases}

 转轴n是矩阵R特征值1对应的特征向量

五、欧拉角

  • 存在万向锁问题,不适用于插值和迭代
  • 欧拉角定义旋转还与绕哪个轴旋转的先后顺序有关,常见的是ZYX轴顺序,即RPY表示

六、四元数

四元数常表示为:

q=q_{0}+q_{1}i+q_{2}j+q_{3}k

 类比于复数欧拉角e^{i\theta}=\cos \theta +i\sin \theta,用于表示复平面上的向量旋转,如何理解四元数表述旋转,可以在B站上找个相关视频观看。单位四元数用于旋转向量,即:

p'=qpq^{-1}

其中,p为向量组成的纯虚四元数 。由四元数到旋转矩阵为:

R=vv^{T}+s^{2}I+2sv^{\wedge }+(v^{\wedge})^{2}

其中,v表示为四元数虚部,s表示为四元数实部。由四元数到旋转向量

\left\{\begin{matrix} tr(R)=4s^{2}-1\Rightarrow \theta =2\arccos s \\ \begin{bmatrix} n_{x} & n_{y} & n_{z} \end{bmatrix}^{T} = \begin{bmatrix} q_{1} & q_{2} & q_{3} \end{bmatrix}^{T}/\sin(\frac{\theta}{2} ) \end{matrix}\right.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值