本博客主要记录学习高翔老师视觉SLAM14讲的总结笔记,若有总结不对的地方,欢迎大家与我讨论。
一、向量内外积
内积:
外积:
二、欧式变换
旋转矩阵是特殊正交群,R^{-1}与R^{T}相同,都表示相反旋转,即:
旋转与平移向量:
三、变换矩阵与齐次坐标
用一个矩阵表示旋转和平移,即为变换矩阵,同时向量坐标也应转换为齐次坐标:
变换矩阵也称为特殊欧式群,即
变换矩阵的逆矩阵为:
四、旋转向量
旋转向量又称角轴,它由一个旋转轴和一个旋转角来刻画,即
罗德里格斯公式建立起旋转向量和旋转矩阵之间的关系,由旋转向量到旋转矩阵为:
由旋转矩阵到旋转向量为:
转轴n是矩阵R特征值1对应的特征向量
五、欧拉角
- 存在万向锁问题,不适用于插值和迭代
- 欧拉角定义旋转还与绕哪个轴旋转的先后顺序有关,常见的是ZYX轴顺序,即RPY表示
六、四元数
四元数常表示为:
类比于复数欧拉角,用于表示复平面上的向量旋转,如何理解四元数表述旋转,可以在B站上找个相关视频观看。单位四元数用于旋转向量,即:
p'=qpq^{-1}
其中,p为向量组成的纯虚四元数 。由四元数到旋转矩阵为:
其中,v表示为四元数虚部,s表示为四元数实部。由四元数到旋转向量: