【游戏课】技术片段之——三个矩阵相乘的结果

文章讨论了游戏课中的一个数学问题,即3个4*4矩阵ABC相乘可能的结果。通过证明矩阵乘法的结合律和非交换律,得出有6种不同的结果,并通过2维矩阵的例子加以验证,强调了变换顺序对最终变换结果的影响,揭示了图形学中变换顺序的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

游戏课的老师让我们计算任意3个4*4矩阵ABC的乘积有几种可能的结果,本文对这个问题进行简单的探讨。

猜想:有6种结果。即ABC ACB BCA BAC CAB CBA结果均不相同。

证明:

我们通过研究ABC与其他乘积的相等关系来证明。矩阵满足乘法结合律,不满足交换律,因此A(BC) != A(CB),即ABC!=ACB。

同理ABC!=BAC,ABC!=BCA,ABC!=CAB。

下面只要验证ABC != CBA即可。举个反例即可。

为了便于计算,我们把维度降为2维。

A = [1 2

       3 4]

B = [5 6

       7 8]

C = [9 10

     

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值