游戏课的老师让我们计算任意3个4*4矩阵ABC的乘积有几种可能的结果,本文对这个问题进行简单的探讨。
猜想:有6种结果。即ABC ACB BCA BAC CAB CBA结果均不相同。
证明:
我们通过研究ABC与其他乘积的相等关系来证明。矩阵满足乘法结合律,不满足交换律,因此A(BC) != A(CB),即ABC!=ACB。
同理ABC!=BAC,ABC!=BCA,ABC!=CAB。
下面只要验证ABC != CBA即可。举个反例即可。
为了便于计算,我们把维度降为2维。
A = [1 2
3 4]
B = [5 6
7 8]
C = [9 10