链表反转的拓展问题
指定区间反转
给你单链表的头指针
head
和两个整数left
和right
,其中left <= right
。请你反转从位置left
到位置right
的链表节点,返回 反转后的链表 。输入:head = [1,2,3,4,5], left = 2, right = 4 输出:[1,4,3,2,5]
struct ListNode { int val; ListNode *next; ListNode() : val(0), next(nullptr) {} ListNode(int x) : val(x), next(nullptr) {} ListNode(int x, ListNode *next) : val(x), next(next) {} };
本题是链表反转的进阶问题。
解决思路也是类似,
方法一:通过两次遍历(不用虚头节点)
先遍历一遍,将需要遍历的left和right的区间找出来,然后对这个区间进行遍历反转,然后再拼回去,这样需要遍历两边链表。
所以这种方法,需要注意的地方就是剪出来和拼回去的过程。
注意,此时的不用虚头节点是指在反转过程中不使用,而在找反转区间的时候还是会使用到虚头节点。
class Solution {
public:
void reverseLinkList(ListNode* head) {
if (head == nullptr) {
return;
}
ListNode* pre = nullptr;
ListNode* curNode = head;
while(curNode != nullptr) {
auto next = curNode->next;
curNode->next = pre;
pre = curNode;
curNode = next;
}
}
ListNode* reverseBetween(ListNode* head, int left, int right) {
if (head == nullptr || head->next == nullptr) {
return head;
}
// 找到需要反转的区间
int num = 0;
ListNode* dummyNode = new ListNode();
dummyNode->next = head;
ListNode* pre = dummyNode;
while(num < left - 1) {
pre = pre->next;
++num;
}
ListNode* rightNode = pre;
while(num < right) {
rightNode = rightNode->next;
++num;
}
ListNode* preLeftNode = pre;
ListNode* leftNode = pre->next;
ListNode* rightNextNode = rightNode->next;
// 裁剪出反转区间
preLeftNode->next = nullptr;
rightNode->next = nullptr;
// 反转区间
reverseLinkList(leftNode);
// 拼接回来
preLeftNode->next = rightNode;
leftNode->next = rightNextNode;
return dummyNode->next;
}
};
方法二:通过一次遍历(借用虚头节点)
那有没有可能我们一边遍历,一边反转呢?
这个时候,我们就可以借助一下虚拟头节点的方法啦!
当我们把需要反转区间的第一个节点的前一个节点作为虚拟头结点时,我们就可以非常轻松地对反转区间进行边遍历边反转的操作了。
class Solution {
public:
ListNode* reverseBetween(ListNode* head, int left, int right) {
if (head == nullptr || head->next == nullptr) {
return head;
}
int num = 0;
ListNode* dummyNode = new ListNode();
dummyNode->next = head;
// 找到交换区间的第一个节点的前一个节点
ListNode* pre = dummyNode;
while(pre != nullptr && num < left - 1) { // 注意需要"-1"
pre = pre->next;
++num;
}
// 继续遍历同时交换节点
ListNode* curNode = pre->next;
while(num < right - 1) { // 注意需要"-1"
ListNode* next = curNode->next;
curNode->next = next->next;
next->next = pre->next;
pre->next = next;
++num;
}
return dummyNode->next;
}
};
两两交换链表中的结点
给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。
输入:head = [1,2,3,4] 输出:[2,1,4,3]
同样,我们借助虚拟头节点来实现本题。
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* dummyNode = new ListNode();
dummyNode->next = head;
ListNode* preNode = dummyNode;
ListNode* curNode = head;
while(curNode != nullptr && curNode->next != nullptr) {
auto nextNode = curNode->next->next;
preNode->next = curNode->next;
curNode->next->next = curNode;
curNode->next = nextNode;
preNode = curNode;
curNode = nextNode;
}
return dummyNode->next;
}
};
链表加法
给你两个 非空 链表来代表两个非负整数。数字最高位位于链表开始位置。它们的每个节点只存储一位数字。将这两数相加会返回一个新的链表。
你可以假设除了数字 0 之外,这两个数字都不会以零开头。
输入:l1 = [7,2,4,3], l2 = [5,6,4] 输出:[7,8,0,7]
根据整数相加的规则,需要从个位开始计算,并且需要考虑到低位相加产生的进位。
反转法
所以,我们需要将两个链表进行一次反转,然后再对链表进行从头到尾的相加运算。
class Solution {
public:
// 反转链表函数
ListNode* reverseList(ListNode* head) {
ListNode* headNode = new ListNode();
ListNode* curNode = head; // 当前插入节点
while(curNode != nullptr) {
auto nextNode = curNode->next; // 记录下一个节点
// 将当前节点插入到新节点头部
curNode->next = headNode->next;
headNode->next = curNode;
curNode = nextNode;
}
return headNode->next;
}
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
if(l1 == nullptr && l2 == nullptr) {
return nullptr;
}
auto newListOne = reverseList(l1);
auto newListTwo = reverseList(l2);
int carry = 0; // 进位
ListNode* dummyNode = new ListNode();
while(newListOne != nullptr || newListTwo != nullptr) {
int sum = carry;
if (newListOne != nullptr) {
sum += newListOne->val;
newListOne = newListOne->next;
}
if (newListTwo != nullptr) {
sum += newListTwo->val;
newListTwo = newListTwo->next;
}
carry = sum > 9 ? 1 : 0;
int val = sum > 9 ? sum - 10 : sum;
ListNode* newNode = new ListNode(val);
newNode->next = dummyNode->next;
dummyNode->next = newNode;
}
// 当所有位数加完之后,若进位还为1,那就需要一个更高位也就是需要创建一个新节点
if (carry == 1) {
ListNode* newNode = new ListNode(carry);
newNode->next = dummyNode->next;
dummyNode->next = newNode;
}
return dummyNode->next;
}
};
用栈
又或者,将两个链表都进行压栈处理,然后两个栈同时出栈进行相加操作,直到其中一个栈为空,再将另外一个不为空的栈继续与进位进行加法运算。
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
if(l1 == nullptr && l2 == nullptr) {
return nullptr;
}
stack<int> stackOne;
while(l1 != nullptr) {
stackOne.push(l1->val);
l1 = l1->next;
}
stack<int> stackTwo;
while(l2 != nullptr) {
stackTwo.push(l2->val);
l2 = l2->next;
}
int carry = 0; // 进位
ListNode* dummyNode = new ListNode();
while(!stackOne.empty() || !stackTwo.empty()) {
int sum = carry;
if (!stackOne.empty()) {
sum += stackOne.top();
stackOne.pop();
}
if (!stackTwo.empty()) {
sum += stackTwo.top();
stackTwo.pop();
}
carry = sum > 9 ? 1 : 0;
int val = sum > 9 ? sum - 10 : sum;
ListNode* newNode = new ListNode(val);
newNode->next = dummyNode->next;
dummyNode->next = newNode;
}
// 当所有位数加完之后,若进位还为1,那就需要一个更高位也就是需要创建一个新节点
if (carry == 1) {
ListNode* newNode = new ListNode(carry);
newNode->next = dummyNode->next;
dummyNode->next = newNode;
}
return dummyNode->next;
}
};
判断是否为回文链表
利用反转法来判断是否为回文链表
给你一个单链表的头节点
head
,请你判断该链表是否为回文链表。如果是,返回true
;否则,返回false
。
方法1: 将链表全部反转,然后形成一个新的链表,两个链表相比较即可
方法2: 将一半的链表进行反转,然后用新的链表和旧的链表比较,那如何获取一半的链表呢?
- 遍历一遍链表得到长度,然后只反转1/2的长度的节点
- 使用快慢指针找到中间节点
下面采用快慢指针实现反转:
主要实现思路是,通过快慢指针将链表分割成两半,在快慢指针遍历的同时对前半部分的链表进行反转操作。看过前面的内容之后,反转已经不成问题了,
但是本题还需要注意的就是当链表节点个数为奇数或偶数是应该怎么处理。
能从图中看出,
当节点数为奇数个时,slow会正好停在中间节点处,而当节点为偶数个时,slow会停在后半部分第一个节点处。
而当节点数为奇数个时,回文链表的判定和中间的节点没有关系,所以我们可以不用考虑中间节点。
当slow指向中间节点时,此时前半部分的链表已经反转成功,将slow向后移动一位(此时与偶数个节点就是同样的状态了),然后将前后链表的节点一一进行比较即可。
class Solution {
public:
bool isPalindrome(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return true;
}
ListNode* slow = head;
ListNode* fast = head;
ListNode* pre = head;
ListNode* prepre = nullptr;
while (fast != nullptr && fast->next != nullptr) {
pre = slow;
slow = slow->next;
fast = fast->next->next;
pre->next = prepre;
prepre = pre;
}
if (fast != nullptr) {
slow = slow->next;
}
while(pre != nullptr && slow != nullptr) {
if (pre->val != slow->val) {
return false;
}
pre = pre->next;
slow = slow->next;
}
return true;
}
};
如果大家有问题,欢迎在评论区一起讨论鸭!