1.5多元函数微分学


考研数学一:多元函数微分学考点全解析

引言

多元函数微分学是考研数学一的核心内容,涉及极限、偏导数、隐函数、极值与条件极值等核心概念。本文系统梳理5大考点,结合公式速查与实战技巧,助你高效攻克多元微分学!


考点一:多元微分的概念

1️⃣ 多元函数求极限

方法

  1. 一元函数极限法:固定其他变量,转化为单变量极限。
  2. 特殊路径法:沿不同路径(如 y = k x y=kx y=kx)趋近,若极限不同则极限不存在。
  3. 夹逼准则:通过不等式放缩证明极限为0。

示例
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 y x 4 + y 2 \lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2} lim(x,y)(0,0)x4+y2x2y


2️⃣ 偏导数

定义
f x ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f_x(x_0,y_0) = \lim_{\Delta x \to 0} \frac{f(x_0+\Delta x, y_0) - f(x_0,y_0)}{\Delta x} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)
关键点:偏导数存在 ≠ 连续。


3️⃣ 全微分

可微定义: 设函数 z = f ( x , y ) z = f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 的某邻域内有定义。若存在线性映射 A Δ x + B Δ y A \Delta x + B \Delta y AΔx+BΔy,使得
Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) , \Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A \Delta x + B \Delta y + o\left( \sqrt{(\Delta x)^2 + (\Delta y)^2} \right), Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o((Δx)2+(Δy)2 ),
则称 f ( x , y ) f(x, y) f(x,y) ( x 0 , y 0 ) (x_0, y_0) (x0,y0)可微,并称 d z = A Δ x + B Δ y dz = A \Delta x + B \Delta y dz=AΔx+BΔy 为全微分。
其中, A = f x ( x 0 , y 0 ) A = f_x(x_0, y_0) A=fx(x0,y0) B = f y ( x 0 , y 0 ) B = f_y(x_0, y_0) B=fy(x0,y0),且极限
lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) Δ z − ( A Δ x + B Δ y ) ( Δ x ) 2 + ( Δ y ) 2 = 0. \lim_{(\Delta x, \Delta y) \to (0, 0)} \frac{\Delta z - (A \Delta x + B \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0. (Δx,Δy)(0,0)lim(Δx)2+(Δy)2 Δz(AΔx+BΔy)=0.


4️⃣ 偏导数连续、可微、连续的关系

条件结论
偏导数连续必可微
可微必连续
偏导数存在但非连续不一定可微

考点二:多元复合函数求偏导

1️⃣ 链式法则

公式
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} xz=uzxu+vzxv
示例
z = e u sin ⁡ v z = e^{u} \sin v z=eusinv u = x y u = xy u=xy v = x + y v = x+y v=x+y,则
∂ z ∂ x = e x y ( y sin ⁡ ( x + y ) + cos ⁡ ( x + y ) ) \frac{\partial z}{\partial x} = e^{xy} (y \sin(x+y) + \cos(x+y)) xz=exy(ysin(x+y)+cos(x+y))

2️⃣ 特例法

技巧:将抽象函数具体化为简单形式(如 f ( u , v ) = u 2 + v 2 f(u,v) = u^2 + v^2 f(u,v)=u2+v2),再求导。


考点三:多元隐函数求偏导

1️⃣ 隐函数存在定理

条件
F ( x 0 , y 0 , z 0 ) = 0 F(x_0,y_0,z_0)=0 F(x0,y0,z0)=0 ∂ F ∂ z ( x 0 , y 0 , z 0 ) ≠ 0 \frac{\partial F}{\partial z}(x_0,y_0,z_0) \neq 0 zF(x0,y0,z0)=0,则存在隐函数 z = f ( x , y ) z = f(x,y) z=f(x,y)

求导方法

  1. 直接求导:对方程两边同时对 x x x 求导,解出 ∂ z ∂ x \frac{\partial z}{\partial x} xz
  2. 公式法
    ∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} xz=FzFx,yz=FzFy
  3. 全微分法:对 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 求全微分,解出 d z dz dz

示例
已知 x 2 + y 2 + z 2 = 1 x^2 + y^2 + z^2 = 1 x2+y2+z2=1,求 ∂ z ∂ x \frac{\partial z}{\partial x} xz
解:公式法得 ∂ z ∂ x = − x z \frac{\partial z}{\partial x} = -\frac{x}{z} xz=zx


考点四:多元函数求极值

1️⃣ 驻点与判别

步骤

  1. 解方程组 { f x = 0 f y = 0 \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} {fx=0fy=0 得驻点。
  2. 计算二阶导数矩阵(Hessian矩阵):
    H = [ f x x f x y f y x f y y ] H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} H=[fxxfyxfxyfyy]
  3. 判别式 A C − B 2 AC - B^2 ACB2
  • A C − B 2 > 0 AC - B^2 > 0 ACB2>0 A > 0 A > 0 A>0 → 极小值
  • A C − B 2 > 0 AC - B^2 > 0 ACB2>0 A < 0 A < 0 A<0 → 极大值
  • A C − B 2 < 0 AC - B^2 < 0 ACB2<0 → 鞍点(非极值点)
  • A C − B 2 = 0 AC - B^2 = 0 ACB2=0 → 需用极值定义判断

示例
f ( x , y ) = x 3 + y 3 − 3 x y f(x,y) = x^3 + y^3 - 3xy f(x,y)=x3+y33xy 的极值
解:驻点为 ( 0 , 0 ) (0,0) (0,0) ( 1 , 1 ) (1,1) (1,1) ( 1 , 1 ) (1,1) (1,1) A C − B 2 = 6 × 6 − 0 = 36 > 0 AC - B^2 = 6 \times 6 - 0 = 36 > 0 ACB2=6×60=36>0 A = 6 > 0 A=6 > 0 A=6>0,故为极小值点。


考点五:多元函数条件极值

1️⃣ 多元函数求条件极值

(1) 代入法

适用场景:约束条件可显式解出一个变量。
步骤

  1. 从约束条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 中解出 y = g ( x ) y = g(x) y=g(x)(或 x = h ( y ) x = h(y) x=h(y))。
  2. y = g ( x ) y = g(x) y=g(x) 代入目标函数 f ( x , y ) f(x,y) f(x,y),转化为单变量函数 f ( x , g ( x ) ) f(x, g(x)) f(x,g(x))
  3. 求导并解方程 f ′ ( x ) = 0 f'(x) = 0 f(x)=0
(2) 拉格朗日乘数法

适用场景:约束条件无法显式解出变量。
公式:构造拉格朗日函数
L ( x , y , λ ) = f ( x , y ) − λ φ ( x , y ) L(x, y, \lambda) = f(x, y) - \lambda \varphi(x, y) L(x,y,λ)=f(x,y)λφ(x,y)
求解步骤

  1. L L L 分别求偏导并令其为零:
    { L x = f x − λ φ x = 0 L y = f y − λ φ y = 0 L λ = − φ ( x , y ) = 0 \begin{cases} L_x = f_x - \lambda \varphi_x = 0 \\ L_y = f_y - \lambda \varphi_y = 0 \\ L_\lambda = -\varphi(x, y) = 0 \end{cases} Lx=fxλφx=0Ly=fyλφy=0Lλ=φ(x,y)=0
  2. 解方程组得到候选点 ( x , y , λ ) (x, y, \lambda) (x,y,λ),剔除 λ = 0 \lambda = 0 λ=0 的无效解。

2️⃣ 多元函数求最值

(1) 开区域极值

步骤

  1. 求驻点:解方程组 f x = 0 , f y = 0 f_x = 0, f_y = 0 fx=0,fy=0
  2. 计算二阶导数矩阵(Hessian矩阵):
    H = [ f x x f x y f y x f y y ] H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} H=[fxxfyxfxyfyy]
  3. 判别式 A C − B 2 AC - B^2 ACB2
    • A C − B 2 > 0 AC - B^2 > 0 ACB2>0 A > 0 A > 0 A>0 → 极小值
    • A C − B 2 > 0 AC - B^2 > 0 ACB2>0 A < 0 A < 0 A<0 → 极大值
    • A C − B 2 < 0 AC - B^2 < 0 ACB2<0 → 鞍点
(2) 边界极值

方法

  1. 代入法:将边界方程代入目标函数,转化为无约束极值问题。
  2. 拉格朗日乘数法:将边界条件作为约束,构造拉格朗日函数。
(3) 综合最值比较

步骤

  1. 求开区域内所有驻点、不可导点的函数值。
  2. 求边界上所有条件驻点、不可导点的函数值。
  3. 比较所有候选值,确定全局最大值和最小值。

⚠️ 实战注意事项

  1. 目标函数化简

  2. 边界处理技巧

  3. 多解情况验证


公式速查表

类型关键公式
全微分 d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy dz=xfdx+yfdy
隐函数求导 ∂ z ∂ x = − F x F z \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} xz=FzFx
拉格朗日乘数法构造 L = f − λ φ L = f - \lambda \varphi L=fλφ
Hessian矩阵判别 A C − B 2 AC - B^2 ACB2

实战技巧

  1. 链式法则优先:复合函数求导时,优先画出变量关系图。
  2. 隐函数求导技巧:利用全微分形式不变性简化计算。
  3. 极值判别步骤:先求驻点,再计算Hessian矩阵,注意边界条件。

总结:多元微分学的核心在于熟练运用链式法则、隐函数定理和极值判别法。结合几何意义与实际问题,提升综合解题能力! 🚀

评论区互动:如笔者有误,欢迎留言交流! 💬

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值