考研数学一:多元函数微分学考点全解析
引言
多元函数微分学是考研数学一的核心内容,涉及极限、偏导数、隐函数、极值与条件极值等核心概念。本文系统梳理5大考点,结合公式速查与实战技巧,助你高效攻克多元微分学!
考点一:多元微分的概念
1️⃣ 多元函数求极限
方法:
- 一元函数极限法:固定其他变量,转化为单变量极限。
- 特殊路径法:沿不同路径(如 y = k x y=kx y=kx)趋近,若极限不同则极限不存在。
- 夹逼准则:通过不等式放缩证明极限为0。
示例:
求
lim
(
x
,
y
)
→
(
0
,
0
)
x
2
y
x
4
+
y
2
\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}
lim(x,y)→(0,0)x4+y2x2y
2️⃣ 偏导数
定义:
f
x
(
x
0
,
y
0
)
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
,
y
0
)
−
f
(
x
0
,
y
0
)
Δ
x
f_x(x_0,y_0) = \lim_{\Delta x \to 0} \frac{f(x_0+\Delta x, y_0) - f(x_0,y_0)}{\Delta x}
fx(x0,y0)=Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
关键点:偏导数存在 ≠ 连续。
3️⃣ 全微分
可微定义: 设函数
z
=
f
(
x
,
y
)
z = f(x, y)
z=f(x,y) 在点
(
x
0
,
y
0
)
(x_0, y_0)
(x0,y0) 的某邻域内有定义。若存在线性映射
A
Δ
x
+
B
Δ
y
A \Delta x + B \Delta y
AΔx+BΔy,使得
Δ
z
=
f
(
x
0
+
Δ
x
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
=
A
Δ
x
+
B
Δ
y
+
o
(
(
Δ
x
)
2
+
(
Δ
y
)
2
)
,
\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A \Delta x + B \Delta y + o\left( \sqrt{(\Delta x)^2 + (\Delta y)^2} \right),
Δz=f(x0+Δx,y0+Δy)−f(x0,y0)=AΔx+BΔy+o((Δx)2+(Δy)2),
则称
f
(
x
,
y
)
f(x, y)
f(x,y) 在
(
x
0
,
y
0
)
(x_0, y_0)
(x0,y0) 处可微,并称
d
z
=
A
Δ
x
+
B
Δ
y
dz = A \Delta x + B \Delta y
dz=AΔx+BΔy 为全微分。
其中,
A
=
f
x
(
x
0
,
y
0
)
A = f_x(x_0, y_0)
A=fx(x0,y0),
B
=
f
y
(
x
0
,
y
0
)
B = f_y(x_0, y_0)
B=fy(x0,y0),且极限
lim
(
Δ
x
,
Δ
y
)
→
(
0
,
0
)
Δ
z
−
(
A
Δ
x
+
B
Δ
y
)
(
Δ
x
)
2
+
(
Δ
y
)
2
=
0.
\lim_{(\Delta x, \Delta y) \to (0, 0)} \frac{\Delta z - (A \Delta x + B \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.
(Δx,Δy)→(0,0)lim(Δx)2+(Δy)2Δz−(AΔx+BΔy)=0.
4️⃣ 偏导数连续、可微、连续的关系
条件 | 结论 |
---|---|
偏导数连续 | 必可微 |
可微 | 必连续 |
偏导数存在但非连续 | 不一定可微 |
考点二:多元复合函数求偏导
1️⃣ 链式法则
公式:
∂
z
∂
x
=
∂
z
∂
u
⋅
∂
u
∂
x
+
∂
z
∂
v
⋅
∂
v
∂
x
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}
∂x∂z=∂u∂z⋅∂x∂u+∂v∂z⋅∂x∂v
示例:
设
z
=
e
u
sin
v
z = e^{u} \sin v
z=eusinv,
u
=
x
y
u = xy
u=xy,
v
=
x
+
y
v = x+y
v=x+y,则
∂
z
∂
x
=
e
x
y
(
y
sin
(
x
+
y
)
+
cos
(
x
+
y
)
)
\frac{\partial z}{\partial x} = e^{xy} (y \sin(x+y) + \cos(x+y))
∂x∂z=exy(ysin(x+y)+cos(x+y))
2️⃣ 特例法
技巧:将抽象函数具体化为简单形式(如 f ( u , v ) = u 2 + v 2 f(u,v) = u^2 + v^2 f(u,v)=u2+v2),再求导。
考点三:多元隐函数求偏导
1️⃣ 隐函数存在定理
条件:
若
F
(
x
0
,
y
0
,
z
0
)
=
0
F(x_0,y_0,z_0)=0
F(x0,y0,z0)=0 且
∂
F
∂
z
(
x
0
,
y
0
,
z
0
)
≠
0
\frac{\partial F}{\partial z}(x_0,y_0,z_0) \neq 0
∂z∂F(x0,y0,z0)=0,则存在隐函数
z
=
f
(
x
,
y
)
z = f(x,y)
z=f(x,y)。
求导方法:
- 直接求导:对方程两边同时对 x x x 求导,解出 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z。
- 公式法:
∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} ∂x∂z=−FzFx,∂y∂z=−FzFy - 全微分法:对 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 求全微分,解出 d z dz dz。
示例:
已知
x
2
+
y
2
+
z
2
=
1
x^2 + y^2 + z^2 = 1
x2+y2+z2=1,求
∂
z
∂
x
\frac{\partial z}{\partial x}
∂x∂z
解:公式法得
∂
z
∂
x
=
−
x
z
\frac{\partial z}{\partial x} = -\frac{x}{z}
∂x∂z=−zx。
考点四:多元函数求极值
1️⃣ 驻点与判别
步骤:
- 解方程组 { f x = 0 f y = 0 \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} {fx=0fy=0 得驻点。
- 计算二阶导数矩阵(Hessian矩阵):
H = [ f x x f x y f y x f y y ] H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} H=[fxxfyxfxyfyy] - 判别式 A C − B 2 AC - B^2 AC−B2:
- A C − B 2 > 0 AC - B^2 > 0 AC−B2>0 且 A > 0 A > 0 A>0 → 极小值
- A C − B 2 > 0 AC - B^2 > 0 AC−B2>0 且 A < 0 A < 0 A<0 → 极大值
- A C − B 2 < 0 AC - B^2 < 0 AC−B2<0 → 鞍点(非极值点)
- A C − B 2 = 0 AC - B^2 = 0 AC−B2=0 → 需用极值定义判断
示例:
求
f
(
x
,
y
)
=
x
3
+
y
3
−
3
x
y
f(x,y) = x^3 + y^3 - 3xy
f(x,y)=x3+y3−3xy 的极值
解:驻点为
(
0
,
0
)
(0,0)
(0,0) 和
(
1
,
1
)
(1,1)
(1,1),
(
1
,
1
)
(1,1)
(1,1) 处
A
C
−
B
2
=
6
×
6
−
0
=
36
>
0
AC - B^2 = 6 \times 6 - 0 = 36 > 0
AC−B2=6×6−0=36>0 且
A
=
6
>
0
A=6 > 0
A=6>0,故为极小值点。
考点五:多元函数条件极值
1️⃣ 多元函数求条件极值
(1) 代入法
适用场景:约束条件可显式解出一个变量。
步骤:
- 从约束条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 中解出 y = g ( x ) y = g(x) y=g(x)(或 x = h ( y ) x = h(y) x=h(y))。
- 将 y = g ( x ) y = g(x) y=g(x) 代入目标函数 f ( x , y ) f(x,y) f(x,y),转化为单变量函数 f ( x , g ( x ) ) f(x, g(x)) f(x,g(x))。
- 求导并解方程 f ′ ( x ) = 0 f'(x) = 0 f′(x)=0。
(2) 拉格朗日乘数法
适用场景:约束条件无法显式解出变量。
公式:构造拉格朗日函数
L
(
x
,
y
,
λ
)
=
f
(
x
,
y
)
−
λ
φ
(
x
,
y
)
L(x, y, \lambda) = f(x, y) - \lambda \varphi(x, y)
L(x,y,λ)=f(x,y)−λφ(x,y)
求解步骤:
- 对
L
L
L 分别求偏导并令其为零:
{ L x = f x − λ φ x = 0 L y = f y − λ φ y = 0 L λ = − φ ( x , y ) = 0 \begin{cases} L_x = f_x - \lambda \varphi_x = 0 \\ L_y = f_y - \lambda \varphi_y = 0 \\ L_\lambda = -\varphi(x, y) = 0 \end{cases} ⎩ ⎨ ⎧Lx=fx−λφx=0Ly=fy−λφy=0Lλ=−φ(x,y)=0 - 解方程组得到候选点 ( x , y , λ ) (x, y, \lambda) (x,y,λ),剔除 λ = 0 \lambda = 0 λ=0 的无效解。
2️⃣ 多元函数求最值
(1) 开区域极值
步骤:
- 求驻点:解方程组 f x = 0 , f y = 0 f_x = 0, f_y = 0 fx=0,fy=0。
- 计算二阶导数矩阵(Hessian矩阵):
H = [ f x x f x y f y x f y y ] H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} H=[fxxfyxfxyfyy] - 判别式
A
C
−
B
2
AC - B^2
AC−B2:
- A C − B 2 > 0 AC - B^2 > 0 AC−B2>0 且 A > 0 A > 0 A>0 → 极小值
- A C − B 2 > 0 AC - B^2 > 0 AC−B2>0 且 A < 0 A < 0 A<0 → 极大值
- A C − B 2 < 0 AC - B^2 < 0 AC−B2<0 → 鞍点
(2) 边界极值
方法:
- 代入法:将边界方程代入目标函数,转化为无约束极值问题。
- 拉格朗日乘数法:将边界条件作为约束,构造拉格朗日函数。
(3) 综合最值比较
步骤:
- 求开区域内所有驻点、不可导点的函数值。
- 求边界上所有条件驻点、不可导点的函数值。
- 比较所有候选值,确定全局最大值和最小值。
⚠️ 实战注意事项
-
目标函数化简:
-
边界处理技巧:
-
多解情况验证:
公式速查表
类型 | 关键公式 |
---|---|
全微分 | d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy dz=∂x∂fdx+∂y∂fdy |
隐函数求导 | ∂ z ∂ x = − F x F z \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} ∂x∂z=−FzFx |
拉格朗日乘数法 | 构造 L = f − λ φ L = f - \lambda \varphi L=f−λφ |
Hessian矩阵判别 | A C − B 2 AC - B^2 AC−B2 |
实战技巧
- 链式法则优先:复合函数求导时,优先画出变量关系图。
- 隐函数求导技巧:利用全微分形式不变性简化计算。
- 极值判别步骤:先求驻点,再计算Hessian矩阵,注意边界条件。
总结:多元微分学的核心在于熟练运用链式法则、隐函数定理和极值判别法。结合几何意义与实际问题,提升综合解题能力! 🚀
评论区互动:如笔者有误,欢迎留言交流! 💬