1.4微分方程


引言

微分方程是考研数学一的核心内容,贯穿积分学、物理应用等多个领域。本文系统梳理6大核心考点,涵盖一阶方程、高阶线性方程、特殊方程及应用,助你高效突破微分方程难点!


考点一:一阶微分方程

1️⃣ 可分离变量微分方程

形式
d y d x = f ( x ) g ( y ) \frac{dy}{dx} = f(x)g(y) dxdy=f(x)g(y)
解法:分离变量后积分
∫ 1 g ( y ) d y = ∫ f ( x ) d x + C \int \frac{1}{g(y)} dy = \int f(x) dx + C g(y)1dy=f(x)dx+C
示例
解方程 d y d x = x y \frac{dy}{dx} = x y dxdy=xy
解:分离变量得 ∫ 1 y d y = ∫ x d x \int \frac{1}{y} dy = \int x dx y1dy=xdx,通解 y = C e x 2 / 2 y = Ce^{x^2/2} y=Cex2/2

2️⃣ 齐次微分方程

形式
d y d x = F ( y x ) \frac{dy}{dx} = F\left(\frac{y}{x}\right) dxdy=F(xy)
解法:令 u = y x u = \frac{y}{x} u=xy,转化为可分离变量方程
示例
解方程 y ′ = y x + tan ⁡ ( y x ) y' = \frac{y}{x} + \tan\left(\frac{y}{x}\right) y=xy+tan(xy)
解:令 u = y x u = \frac{y}{x} u=xy,得通解 y = x arcsin ⁡ ( C x ) y = x \arcsin(Cx) y=xarcsin(Cx)

3️⃣ 一阶线性微分方程

标准形式
y ′ + P ( x ) y = Q ( x ) y' + P(x)y = Q(x) y+P(x)y=Q(x)
通解公式
y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) y = e^{-\int P(x) dx} \left( \int Q(x) e^{\int P(x) dx} dx + C \right) y=eP(x)dx(Q(x)eP(x)dxdx+C)
示例
解方程 y ′ + y cos ⁡ x = e − sin ⁡ x y' + y \cos x = e^{-\sin x} y+ycosx=esinx
解:积分因子 μ ( x ) = e ∫ cos ⁡ x d x = e sin ⁡ x \mu(x) = e^{\int \cos x dx} = e^{\sin x} μ(x)=ecosxdx=esinx,通解 y = e − sin ⁡ x ( x + C ) y = e^{-\sin x} (x + C) y=esinx(x+C)


考点二:可降阶微分方程

1️⃣ 不显含 y y y

形式
F ( x , y ′ , y ′ ′ ) = 0 F(x, y', y'') = 0 F(x,y,y′′)=0
解法:令 p = y ′ p = y' p=y,转化为 F ( x , p , p ′ ) = 0 F(x, p, p') = 0 F(x,p,p)=0
示例
解方程 x y ′ ′ + y ′ = 0 xy'' + y' = 0 xy′′+y=0
解:令 p = y ′ p = y' p=y,得 x p ′ + p = 0 x p' + p = 0 xp+p=0,通解 y = C 1 ln ⁡ x + C 2 y = C_1 \ln x + C_2 y=C1lnx+C2

2️⃣ 不显含 x x x

形式
F ( y , y ′ , y ′ ′ ) = 0 F(y, y', y'') = 0 F(y,y,y′′)=0
解法:令 p = y ′ p = y' p=y,利用链式法则 y ′ ′ = d p d x = d p d y ⋅ d y d x = p d p d y y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp
示例
解方程 y y ′ ′ − ( y ′ ) 2 = 0 yy'' - (y')^2 = 0 yy′′(y)2=0
解:令 p = y ′ p = y' p=y,得 y p d p d y − p 2 = 0 y p \frac{dp}{dy} - p^2 = 0 ypdydpp2=0,通解 y = C 1 e C 2 x y = C_1 e^{C_2 x} y=C1eC2x

3️⃣ 不显含 x , y x, y x,y

形式
F ( y ′ , y ′ ′ ) = 0 F(y', y'') = 0 F(y,y′′)=0
解法:令 p = y ′ p = y' p=y,方程化为 F ( p , p ′ ) = 0 F(p, p') = 0 F(p,p)=0
示例
解方程 y ′ ′ = y ′ y'' = y' y′′=y
解:令 p = y ′ p = y' p=y,得 p ′ = p p' = p p=p,通解 y = C 1 e x + C 2 y = C_1 e^{x} + C_2 y=C1ex+C2


考点三:线性微分方程解的结构

1️⃣ 解的结构定理

性质公式表示
齐次解叠加 c 1 y 1 + c 2 y 2 c_1 y_1 + c_2 y_2 c1y1+c2y2 是齐次方程解
非齐次解叠加 c 1 y 1 + c 2 y 2 c_1 y_1 + c_2 y_2 c1y1+c2y2 是非齐次方程解当且仅当 c 1 + c 2 = 1 c_1 + c_2 = 1 c1+c2=1
叠加原理 y 1 , y 2 y_1, y_2 y1,y2 是解,则 y 1 + y 2 y_1 + y_2 y1+y2 是对应齐次方程解

2️⃣ 二阶常系数齐次线性方程

通解形式
y ′ ′ + p y ′ + q y = 0 y'' + p y' + q y = 0 y′′+py+qy=0

  • 特征方程 r 2 + p r + q = 0 r^2 + p r + q = 0 r2+pr+q=0
  • 通解
    • 单根 r 1 ≠ r 2 r_1 \neq r_2 r1=r2 y = C 1 e r 1 x + C 2 e r 2 x y = C_1 e^{r_1 x} + C_2 e^{r_2 x} y=C1er1x+C2er2x
    • 重根 r 1 = r 2 r_1 = r_2 r1=r2 y = ( C 1 + C 2 x ) e r 1 x y = (C_1 + C_2 x) e^{r_1 x} y=(C1+C2x)er1x
    • 复根 α ± β i \alpha \pm \beta i α±βi y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) y=eαx(C1cosβx+C2sinβx)

3️⃣ 二阶常系数非齐次方程

特解形式

非齐次项 Q ( x ) Q(x) Q(x)特解假设形式
e λ x e^{\lambda x} eλx y ∗ = x k A e λ x y^* = x^kA e^{\lambda x} y=xkAeλx
x n x^n xn y ∗ = x k ( A n x n + ⋯ + A 0 ) y^* = x^k (A_n x^n + \cdots + A_0) y=xk(Anxn++A0)
sin ⁡ β x \sin \beta x sinβx y ∗ = x k ( A sin ⁡ β x + B cos ⁡ β x ) y^* = x^k(A \sin \beta x + B \cos \beta x) y=xk(Asinβx+Bcosβx)
λ \lambda λ 是特征方程的根单根/虚数根:多乘 x x x;k重根:多乘 x k x^k xk

考点四:微分方程的应用

1️⃣ 含变限积分函数的方程

通法

  1. 找初值条件
  2. 对方程两边求导转化为微分方程
    示例
    已知 ∫ 0 x ( t 2 + y ( t ) ) d t = x 3 \int_0^x (t^2 + y(t)) dt = x^3 0x(t2+y(t))dt=x3,求 y ( x ) y(x) y(x)
    解:求导得 x 2 + y ( x ) = 3 x 2 x^2 + y(x) = 3x^2 x2+y(x)=3x2,解得 y = 2 x 2 y = 2x^2 y=2x2

2️⃣ 几何应用

应用类型关键公式示例
切线方程 y = y ′ ( x 0 ) ( x − x 0 ) + y ( x 0 ) y = y'(x_0)(x - x_0) + y(x_0) y=y(x0)(xx0)+y(x0)求曲线 y = y ( x ) y=y(x) y=y(x) x = 1 x=1 x=1 处切线
法线方程 y = − 1 y ′ ( x 0 ) ( x − x 0 ) + y ( x 0 ) y = -\frac{1}{y'(x_0)}(x - x_0) + y(x_0) y=y(x0)1(xx0)+y(x0)
旋转体体积 V = π ∫ a b [ f ( x ) ] 2 d x V = \pi \int_a^b [f(x)]^2 dx V=πab[f(x)]2dx y = x y = \sqrt{x} y=x 绕 x 轴旋转体积

考点五:伯努利方程与欧拉方程

1️⃣ 伯努利方程

y ′ + P ( x ) y = Q ( x ) y n y' + P(x) y = Q(x) y^n y+P(x)y=Q(x)yn
解法:令 z = y 1 − n z = y^{1-n} z=y1n,转化为线性方程
示例
解方程 y ′ + y = x y 2 y' + y = x y^2 y+y=xy2
解:令 z = y − 1 z = y^{-1} z=y1,得线性方程 z ′ − z = − x z' - z = -x zz=x,通解 y = 1 C e x + x + 1 y = \frac{1}{C e^x + x + 1} y=Cex+x+11

2️⃣欧拉方程

x n y ( n ) + a 1 x n − 1 y ( n − 1 ) + ⋯ + a n − 1 x y ′ + a n y = 0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \cdots + a_{n-1} x y' + a_n y = 0 xny(n)+a1xn1y(n1)++an1xy+any=0
解法:令 t = ln ⁡ x t = \ln x t=lnx,转化为常系数线性方程
示例
解方程 x 2 y ′ ′ + x y ′ − y = 0 x^2 y'' + x y' - y = 0 x2y′′+xyy=0
解:令 t = ln ⁡ x t = \ln x t=lnx,得通解 y = C 1 e t + C 2 e − t y = C_1 e^{t} + C_2 e^{-t} y=C1et+C2et(即 y = C 1 x + C 2 x y = C_1 x + \frac{C_2}{x} y=C1x+xC2)。


公式速查表

类型关键公式
一阶线性方程通解 y = e − ∫ P d x ( ∫ Q e ∫ P d x d x + C ) y = e^{-\int P dx} \left( \int Q e^{\int P dx} dx + C \right) y=ePdx(QePdxdx+C)
二阶齐次方程通解 y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) y=eαx(C1cosβx+C2sinβx)
伯努利方程特解 z = y 1 − n z = y^{1-n} z=y1n 代入线性方程求解
欧拉方程通解 y = C 1 x k + C 2 x k ′ y = C_1 x^k + C_2 x^{k'} y=C1xk+C2xk(通过特征根确定)

实战技巧

  1. 降阶优先:遇到高阶方程先尝试降阶(如不显含 x x x y y y 型)。
  2. 特解假设:非齐次方程特解假设时注意重复根需乘以 x x x
  3. 积分因子法:一阶线性方程必用积分因子简化计算。

总结:掌握微分方程的核心在于熟练运用各类方程的解法框架,并通过大量练习积累题型经验。结合几何应用与物理背景,提升综合解题能力! 🚀

评论区互动:如笔者有误,欢迎留言交流! 💬

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值