引言
微分方程是考研数学一的核心内容,贯穿积分学、物理应用等多个领域。本文系统梳理6大核心考点,涵盖一阶方程、高阶线性方程、特殊方程及应用,助你高效突破微分方程难点!
考点一:一阶微分方程
1️⃣ 可分离变量微分方程
形式:
d
y
d
x
=
f
(
x
)
g
(
y
)
\frac{dy}{dx} = f(x)g(y)
dxdy=f(x)g(y)
解法:分离变量后积分
∫
1
g
(
y
)
d
y
=
∫
f
(
x
)
d
x
+
C
\int \frac{1}{g(y)} dy = \int f(x) dx + C
∫g(y)1dy=∫f(x)dx+C
示例:
解方程
d
y
d
x
=
x
y
\frac{dy}{dx} = x y
dxdy=xy
解:分离变量得
∫
1
y
d
y
=
∫
x
d
x
\int \frac{1}{y} dy = \int x dx
∫y1dy=∫xdx,通解
y
=
C
e
x
2
/
2
y = Ce^{x^2/2}
y=Cex2/2。
2️⃣ 齐次微分方程
形式:
d
y
d
x
=
F
(
y
x
)
\frac{dy}{dx} = F\left(\frac{y}{x}\right)
dxdy=F(xy)
解法:令
u
=
y
x
u = \frac{y}{x}
u=xy,转化为可分离变量方程
示例:
解方程
y
′
=
y
x
+
tan
(
y
x
)
y' = \frac{y}{x} + \tan\left(\frac{y}{x}\right)
y′=xy+tan(xy)
解:令
u
=
y
x
u = \frac{y}{x}
u=xy,得通解
y
=
x
arcsin
(
C
x
)
y = x \arcsin(Cx)
y=xarcsin(Cx)。
3️⃣ 一阶线性微分方程
标准形式:
y
′
+
P
(
x
)
y
=
Q
(
x
)
y' + P(x)y = Q(x)
y′+P(x)y=Q(x)
通解公式:
y
=
e
−
∫
P
(
x
)
d
x
(
∫
Q
(
x
)
e
∫
P
(
x
)
d
x
d
x
+
C
)
y = e^{-\int P(x) dx} \left( \int Q(x) e^{\int P(x) dx} dx + C \right)
y=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C)
示例:
解方程
y
′
+
y
cos
x
=
e
−
sin
x
y' + y \cos x = e^{-\sin x}
y′+ycosx=e−sinx
解:积分因子
μ
(
x
)
=
e
∫
cos
x
d
x
=
e
sin
x
\mu(x) = e^{\int \cos x dx} = e^{\sin x}
μ(x)=e∫cosxdx=esinx,通解
y
=
e
−
sin
x
(
x
+
C
)
y = e^{-\sin x} (x + C)
y=e−sinx(x+C)。
考点二:可降阶微分方程
1️⃣ 不显含 y y y 型
形式:
F
(
x
,
y
′
,
y
′
′
)
=
0
F(x, y', y'') = 0
F(x,y′,y′′)=0
解法:令
p
=
y
′
p = y'
p=y′,转化为
F
(
x
,
p
,
p
′
)
=
0
F(x, p, p') = 0
F(x,p,p′)=0
示例:
解方程
x
y
′
′
+
y
′
=
0
xy'' + y' = 0
xy′′+y′=0
解:令
p
=
y
′
p = y'
p=y′,得
x
p
′
+
p
=
0
x p' + p = 0
xp′+p=0,通解
y
=
C
1
ln
x
+
C
2
y = C_1 \ln x + C_2
y=C1lnx+C2。
2️⃣ 不显含 x x x 型
形式:
F
(
y
,
y
′
,
y
′
′
)
=
0
F(y, y', y'') = 0
F(y,y′,y′′)=0
解法:令
p
=
y
′
p = y'
p=y′,利用链式法则
y
′
′
=
d
p
d
x
=
d
p
d
y
⋅
d
y
d
x
=
p
d
p
d
y
y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \frac{dp}{dy}
y′′=dxdp=dydp⋅dxdy=pdydp
示例:
解方程
y
y
′
′
−
(
y
′
)
2
=
0
yy'' - (y')^2 = 0
yy′′−(y′)2=0
解:令
p
=
y
′
p = y'
p=y′,得
y
p
d
p
d
y
−
p
2
=
0
y p \frac{dp}{dy} - p^2 = 0
ypdydp−p2=0,通解
y
=
C
1
e
C
2
x
y = C_1 e^{C_2 x}
y=C1eC2x。
3️⃣ 不显含 x , y x, y x,y 型
形式:
F
(
y
′
,
y
′
′
)
=
0
F(y', y'') = 0
F(y′,y′′)=0
解法:令
p
=
y
′
p = y'
p=y′,方程化为
F
(
p
,
p
′
)
=
0
F(p, p') = 0
F(p,p′)=0
示例:
解方程
y
′
′
=
y
′
y'' = y'
y′′=y′
解:令
p
=
y
′
p = y'
p=y′,得
p
′
=
p
p' = p
p′=p,通解
y
=
C
1
e
x
+
C
2
y = C_1 e^{x} + C_2
y=C1ex+C2。
考点三:线性微分方程解的结构
1️⃣ 解的结构定理
性质 | 公式表示 |
---|---|
齐次解叠加 | c 1 y 1 + c 2 y 2 c_1 y_1 + c_2 y_2 c1y1+c2y2 是齐次方程解 |
非齐次解叠加 | c 1 y 1 + c 2 y 2 c_1 y_1 + c_2 y_2 c1y1+c2y2 是非齐次方程解当且仅当 c 1 + c 2 = 1 c_1 + c_2 = 1 c1+c2=1 |
叠加原理 | 若 y 1 , y 2 y_1, y_2 y1,y2 是解,则 y 1 + y 2 y_1 + y_2 y1+y2 是对应齐次方程解 |
2️⃣ 二阶常系数齐次线性方程
通解形式:
y
′
′
+
p
y
′
+
q
y
=
0
y'' + p y' + q y = 0
y′′+py′+qy=0
- 特征方程: r 2 + p r + q = 0 r^2 + p r + q = 0 r2+pr+q=0
- 通解:
- 单根 r 1 ≠ r 2 r_1 \neq r_2 r1=r2: y = C 1 e r 1 x + C 2 e r 2 x y = C_1 e^{r_1 x} + C_2 e^{r_2 x} y=C1er1x+C2er2x
- 重根 r 1 = r 2 r_1 = r_2 r1=r2: y = ( C 1 + C 2 x ) e r 1 x y = (C_1 + C_2 x) e^{r_1 x} y=(C1+C2x)er1x
- 复根 α ± β i \alpha \pm \beta i α±βi: y = e α x ( C 1 cos β x + C 2 sin β x ) y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) y=eαx(C1cosβx+C2sinβx)
3️⃣ 二阶常系数非齐次方程
特解形式:
非齐次项 Q ( x ) Q(x) Q(x) | 特解假设形式 |
---|---|
e λ x e^{\lambda x} eλx | y ∗ = x k A e λ x y^* = x^kA e^{\lambda x} y∗=xkAeλx |
x n x^n xn | y ∗ = x k ( A n x n + ⋯ + A 0 ) y^* = x^k (A_n x^n + \cdots + A_0) y∗=xk(Anxn+⋯+A0) |
sin β x \sin \beta x sinβx | y ∗ = x k ( A sin β x + B cos β x ) y^* = x^k(A \sin \beta x + B \cos \beta x) y∗=xk(Asinβx+Bcosβx) |
λ \lambda λ 是特征方程的根 | 单根/虚数根:多乘 x x x;k重根:多乘 x k x^k xk |
考点四:微分方程的应用
1️⃣ 含变限积分函数的方程
通法:
- 找初值条件
- 对方程两边求导转化为微分方程
示例:
已知 ∫ 0 x ( t 2 + y ( t ) ) d t = x 3 \int_0^x (t^2 + y(t)) dt = x^3 ∫0x(t2+y(t))dt=x3,求 y ( x ) y(x) y(x)
解:求导得 x 2 + y ( x ) = 3 x 2 x^2 + y(x) = 3x^2 x2+y(x)=3x2,解得 y = 2 x 2 y = 2x^2 y=2x2。
2️⃣ 几何应用
应用类型 | 关键公式 | 示例 |
---|---|---|
切线方程 | y = y ′ ( x 0 ) ( x − x 0 ) + y ( x 0 ) y = y'(x_0)(x - x_0) + y(x_0) y=y′(x0)(x−x0)+y(x0) | 求曲线 y = y ( x ) y=y(x) y=y(x) 在 x = 1 x=1 x=1 处切线 |
法线方程 | y = − 1 y ′ ( x 0 ) ( x − x 0 ) + y ( x 0 ) y = -\frac{1}{y'(x_0)}(x - x_0) + y(x_0) y=−y′(x0)1(x−x0)+y(x0) | |
旋转体体积 | V = π ∫ a b [ f ( x ) ] 2 d x V = \pi \int_a^b [f(x)]^2 dx V=π∫ab[f(x)]2dx | 求 y = x y = \sqrt{x} y=x 绕 x 轴旋转体积 |
考点五:伯努利方程与欧拉方程
1️⃣ 伯努利方程
y
′
+
P
(
x
)
y
=
Q
(
x
)
y
n
y' + P(x) y = Q(x) y^n
y′+P(x)y=Q(x)yn
解法:令
z
=
y
1
−
n
z = y^{1-n}
z=y1−n,转化为线性方程
示例:
解方程
y
′
+
y
=
x
y
2
y' + y = x y^2
y′+y=xy2
解:令
z
=
y
−
1
z = y^{-1}
z=y−1,得线性方程
z
′
−
z
=
−
x
z' - z = -x
z′−z=−x,通解
y
=
1
C
e
x
+
x
+
1
y = \frac{1}{C e^x + x + 1}
y=Cex+x+11。
2️⃣欧拉方程
x
n
y
(
n
)
+
a
1
x
n
−
1
y
(
n
−
1
)
+
⋯
+
a
n
−
1
x
y
′
+
a
n
y
=
0
x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \cdots + a_{n-1} x y' + a_n y = 0
xny(n)+a1xn−1y(n−1)+⋯+an−1xy′+any=0
解法:令
t
=
ln
x
t = \ln x
t=lnx,转化为常系数线性方程
示例:
解方程
x
2
y
′
′
+
x
y
′
−
y
=
0
x^2 y'' + x y' - y = 0
x2y′′+xy′−y=0
解:令
t
=
ln
x
t = \ln x
t=lnx,得通解
y
=
C
1
e
t
+
C
2
e
−
t
y = C_1 e^{t} + C_2 e^{-t}
y=C1et+C2e−t(即
y
=
C
1
x
+
C
2
x
y = C_1 x + \frac{C_2}{x}
y=C1x+xC2)。
公式速查表
类型 | 关键公式 |
---|---|
一阶线性方程通解 | y = e − ∫ P d x ( ∫ Q e ∫ P d x d x + C ) y = e^{-\int P dx} \left( \int Q e^{\int P dx} dx + C \right) y=e−∫Pdx(∫Qe∫Pdxdx+C) |
二阶齐次方程通解 | y = e α x ( C 1 cos β x + C 2 sin β x ) y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) y=eαx(C1cosβx+C2sinβx) |
伯努利方程特解 | z = y 1 − n z = y^{1-n} z=y1−n 代入线性方程求解 |
欧拉方程通解 | y = C 1 x k + C 2 x k ′ y = C_1 x^k + C_2 x^{k'} y=C1xk+C2xk′(通过特征根确定) |
实战技巧
- 降阶优先:遇到高阶方程先尝试降阶(如不显含 x x x 或 y y y 型)。
- 特解假设:非齐次方程特解假设时注意重复根需乘以 x x x。
- 积分因子法:一阶线性方程必用积分因子简化计算。
总结:掌握微分方程的核心在于熟练运用各类方程的解法框架,并通过大量练习积累题型经验。结合几何应用与物理背景,提升综合解题能力! 🚀
评论区互动:如笔者有误,欢迎留言交流! 💬