063 - Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.



int uniquePathsWithObstacles(int** grid, int row, int col) 
{
	int i, j;
	
	if (!row || !col) return 0;
	for (i = 0; i < col; i++) {
		grid[0][i] = grid[0][i] ? -1 : 1;
		if (i && grid[0][i - 1] == -1) grid[0][i] = -1;
	}
	for (i = 1; i < row; i++) {
		grid[i][0] = grid[i][0] ? -1 : 1;
		if (grid[i - 1][0] == -1) grid[i][0] = -1;
	}
	for (i = 1; i < row; i++)
		for (j = 1; j < col; j++) {
			if (grid[i][j] == 1) {
				grid[i][j] = -1;
				continue;
			}
			if (grid[i][j - 1] > 0) grid[i][j] += grid[i][j - 1];
			if (grid[i - 1][j] > 0) grid[i][j] += grid[i - 1][j];
			//if (!grid[i][j]) grid[i][j] = -1;
		}
		
	return grid[row - 1][col - 1] > 0 ? grid[row - 1][col - 1] : 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值