
Andrew Ng公开课
文章平均质量分 76
Andrew Ng
风中凌乱的小精灵
一只可爱的Researcher
展开
-
网课 | Andrew Ng 深度学习公开课——03 结构化机器学习项目
本节主要内容《深度学习公开课》第三部分 “结构化机器学习项目”主要是从数据和误差分析两个角度描述如何提升机器学习项目的准确率,然后讲述迁移学习和端到端的学习这两个常用方法的概念。整体思路为将机器学习算法应用到一个具体任务中时,可以尝试如下步骤:定义数据集和度量指标建立原始系统进行偏差、方差和误差分析根据分析结果确立下一步优化方向详细笔记 小原创 2021-10-02 20:58:10 · 306 阅读 · 1 评论 -
网课 | Andrew Ng 深度学习公开课——01 神经网络和深度学习
01 神经网络和深度学习写在前面本节主要内容课程笔记小结写在前面“网课 | Andrew Ng 深度学习公开课”系列博客记录该公开课的学习笔记。这个公开课是我大三学年入门深度学习和计算机视觉时学过的课程,现在由于很多细节知识点有些遗忘,因此重新学习并整理了一下。网易云课堂购买并翻译了该课程的学习视频,链接如下:https://mooc.study.163.com/smartSpec/detail/1001319001.htm课程主要内容有:神经网络基础→\rightarrow→卷积神经原创 2021-06-22 10:59:07 · 807 阅读 · 0 评论 -
网课 | Andrew Ng 深度学习公开课——02 神经网络优化
02 神经网络优化本节主要内容思维导图课程笔记延伸阅读小结本节主要内容《深度学习公开课》第二部分 “神经网络优化”主要是介绍提升网络性能的技巧,包括具体的做法和原理:L2正则化、Dropout正则化、BatchNormalization、学习率衰减等;然后依次介绍常用的优化器的具体计算过程:GD、SGD、Batch GD、RMSprop、Adam;最后是参数优化技巧:网格搜索和随机搜索等。这章的很多的知识点既是网络调优过程中非常有用的技巧,也是面试中常问的点,例如:BN和dropout训练和测试的原创 2021-08-04 13:18:53 · 539 阅读 · 0 评论