4.1字符串
4.1.1 字符串的定义
1.定义
字符串是零个或多个字符组成的有限序列,只包含空格的串称为空格串。串中所包含的字符个数称为串的长度,长度为零的串称为空串,记作“ ”。
S="s1s2 …… sn "
其中:S是串名,双引号是定界符,双引号引起来的部分是串值 ,si(1≤i≤n)是一个任意字符。
4.1.3 模式匹配
给定主串S="s1s2…sn"和模式T="t1t2…tm",在S中寻找T 的过程称为模式匹配。如果匹配成功,返回T 在S中的位置;如果匹配失败,返回0。
1.BF算法
(1)在串S和串T中设比较的起始下标i和j;
(2)循环直到S或T的所有字符均比较完
i.如果S[i]=T[j],继续比较S和T的下一个字符;
ii.否则,将i和j回溯,准备下一趟比较;
(3)如果T中所有字符均比较完,则匹配成功,返回匹配的起始比较下标;否则,匹配失败,返回0;
程序如下:
int BF(char S[ ], char T[ ])
{
i=0; j=0;
while (S[i]!='\0'&&T[j]!='\0')
{
if (S[i]==T[j]) {
i++; j++;
}
else {
i=i-j+1; j=0;
}
}
if (T[j]=='\0') return(i-j+1);
else return 0;
}
4.2 多维数组
数组的定义
数组是由一组类型相同的数据元素构成的有序集合,每个数据元素称为一个数组元素(简称为元素),每个元素受n(n≥1)个线性关系的约束,每个元素在n个线性关系中的序号i1、i2、…、in称为该元素的下标,并称该数组为n维数组。
数组的特点
元素本身可以具有某种结构,属于同一数据类型;
数组是一个具有固定格式和数量的数据集合
数组的基本操作
⑴存取:给定一组下标,读出对应的数组元素;
⑵修改:给定一组下标,存储或修改与其相对应的数组元素。
存取和修改操作本质上只对应一种操作——寻址
数组的存储结构与寻址——二维数组
常用的映射方法有两种:
按行优先:先行后列,先存储行号较小的元素,行号相同者先存储列号较小的元素。
按列优先:先列后行,先存储列号较小的元素,列号相同者先存储行号较小的元素。
4.3 矩阵的压缩存储
特殊矩阵和稀疏矩阵
特殊矩阵:矩阵中很多值相同的元素并且它们的分布有一定的规律。
稀疏矩阵:矩阵中有很多零元素。
压缩存储的基本思想是:
⑴为多个值相同的元素只分配一个存储空间;
⑵对零元素不分配存储空间
特殊矩阵的压缩存储——三角矩阵
下三角矩阵的压缩存储
存储:下三角元素
对角线上方的常数——只存一个
上三角矩阵的压缩存储
存储:上三角元素
对角线上方的常数——只存一个
特殊矩阵的压缩存储——对角矩阵
对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零
稀疏矩阵的压缩存储
将稀疏矩阵中的每个非零元素表示为:
(行号,列号,非零元素值)——三元组
template <class DataType>
struct element
{
int row, col; //行号,列号
DataType item //非零元素值
};
稀疏矩阵的压缩存储——三元组顺序表
三元组表:将稀疏矩阵的非零元素对应的三元组所构成的集合,按行优先的顺序排列成一个线性表。
稀疏矩阵的压缩存储——十字链表
采用链接存储结构存储三元组表,每个非零元素对应的三元组存储为一个链表结点
4.3.1 对称矩阵的压缩存储
对称矩阵特点:aij=aji。
对于下三角中的元素aij(i≥j),在数组SA中的下标k与i、j的关系为:k=i×(i-1)/2+j -1。
上三角中的元素aij(i<j),因为aij=aji,则访问和它对应的元素aji即可,即:k=j×(j-1)/2+i-1。
4.3.2 三角矩阵的压缩存储
只存储上三角(或下三角)部分的元素。
矩阵中任一元素aij在数组中的下标k与i、j的对应关系:
对于上三角矩阵,可以按行存储上三角部分,最后存储对角线下方的常数;下三角矩阵则相似,要存储下三角中的元素和对角线上方的常数。
4.3.3 对角矩阵的压缩存储
对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零。
元素aij在一维数组中的序号=2 + 3(i-2)+(j-i+ 2)=2i+ j -2
∵一维数组下标从0开始
∴元素aij在一维数组中的下标=2i+ j -3。
4.3.4 稀疏矩阵的压缩存储
1.三元组顺序表
将稀疏矩阵中的每个非零元素表示为:(行号,列号,非零元素值)——三元组。
定义三元组:
template <class DataType>
struct element
{
int row,col; //行号,列号
DataType item //非零元素值
};
三元组表:将稀疏矩阵的非零元素对应的三元组所构成的集合,按行优先的顺序排列成一个线性表。
三元组顺序表存储结构定义:
const intMaxTerm=100;
template <class DataType>
structSparseMatrix
{
DataType data[MaxTerm]; //存储非零元素
int mu, nu, tu; //行数、列数、非零元个数
};
2.十字链表
row:存储非零元素的行号
col:存储非零元素的列号
item:存储非零元素的值
right:指针域,指向同一行中的下一个三元组
down:指针域,指向同一列中的下一个三元组