2018年高考已经结束,从全国卷1理科卷来看,出题中规中矩,覆盖知识点比较全面,难度并不是很大.若平时复习不是打酱油的话,很多基础题是没有问题的.
填空题第16题以三角函数为载体,考查求最值问题,考生可以有不同的切入角度,从而有不同的解题方法,体现出学生思维灵活性的差异,对学生可能有难度,部分学生可能会直接去化简合并,但不会成功;直接求导讨论函数的极值点会成功.
已知函数 f(x)=2sinx+sin2x, f ( x ) = 2 sin x + sin 2 x , 则 f(x) f ( x ) 的最小值是 _ .
01常规求导法
首先说的是常规求导法,即求出函数的导数,令导数为0,求出极值,极值与区间端点处的函数值进行比较,最大的就是最大值,最小的就是最小值,当然在具体处理时还有一些细节方面的注意,比如不可导点也应该考虑进来,有时不需要求出极值点,只需求出极值点满足的条件.
显然, f(x) f ( x ) 的周期为 2π 2 π ,所以可以在一个周期 [0,2π) [ 0 , 2 π ) 内讨论,
f′(x)=2cosx+2cos2x=2cosx+2(2cos2x−1) f ′ ( x ) = 2 cos x + 2 cos 2 x = 2 cos x + 2 ( 2 cos 2 x − 1 )
=2(2cos2x+cosx−1)=2(2cosx−1)(cosx+1) = 2 ( 2 cos 2 x + cos x − 1 ) = 2 ( 2 cos x − 1 ) ( cos x + 1 )
令 f′(x)=0, f ′ ( x ) = 0 , 得 cosx=−1, cos x = − 1 , 或 cosx=12. cos x = 1 2 .
在 [0,2π) [ 0 , 2 π ) 内, f(x) f ( x ) 的最小值只能在使得
cosx=1,cosx=−1,cosx=12 cos x = 1 , cos x = − 1 , cos x = 1 2
的这些点处取到.对应的 sinx sin x 的值依次是
sinx=0,sinx=0,sinx=±3–√2. sin x = 0 , sin x = 0 , sin x = ± 3 2 .
显然, f(x)=2sinx+sin2x=2sinx(1+cosx) f ( x ) = 2 sin x + sin 2 x = 2 sin x ( 1 + cos x ) 的最小值为
2⋅(−3–√2)⋅(1+