题目:在锐角 △ A B C \triangle ABC △ABC中,角 A , B , C A,B,C A,B,C的对边分别为 a , b , c , a,b,c, a,b,c,若 a 2 = b 2 + b c , a^2=b^2+bc, a2=b2+bc,则 a b \dfrac a b ba的取值范围是 ‾ \underline{\quad\quad} .
首先我们来看下作业帮提供的答案:
∵ a 2 = b 2 + b c , \because a^2=b^2+bc, ∵a2=b2+bc,由余弦定理可得
a 2 = b 2 + c 2 − 2 b c cos A a^2=b^2+c^2-2bc\cos A a2=b2+c2−2bccosA
∴ b 2 + b c = b 2 + c 2 − 2 b c cos A \therefore b^2+bc=b^2+c^2-2bc\cos A ∴b2+bc=b2+c2−2bccosA整理得
c = b ( 1 + 2 cos A ) , c=b(1+2\cos A), c=b(1+2cosA),
∴ a 2 = b 2 + b 2 ( 1 + 2 cos A ) = b 2 ( 2 + 2 cos A ) \therefore a^2=b^2+b^2(1+2\cos A)=b^2(2+2\cos A) ∴a2=b2+b2(1+2cosA)=b2(2+2cosA)
∴ a b = 2 + 2 cos A \therefore \dfrac a b=\sqrt{2+2\cos A} ∴ba=2+2cosA
在锐角 △ A B C \triangle ABC △ABC中, A ∈ ( 0 , π 2 ) , cos A ∈ ( 0 , 1 ) , A\in(0,\dfrac{\pi}{2}),\cos A\in(0,1), A∈
若锐角三角形a^2=b^2+bc,求a/b的取值范围发百
最新推荐文章于 2024-04-03 17:51:29 发布