Delaunay三角剖分

 

最近点意义下的Voronoi图的直线对偶图就是Delaunay三角剖分,因此可以把上上篇描述的构造Voronoi图的分治算法用于Delaunay三角剖分。

增量算法:易于实现,使用广泛,适合小规模点集的三角化。具体过程如下:

1 遍历所有散点,生成一个包含所有散点的大三角形(顶点不在点集中)

2 有未处理过的点p,插入之,否则结束算法,退出

3 在已剖分好的三角网中找出包含点p的三角形t,把pt的三个顶点相连,构成三个三角形

4 根据优化准则对局部生成的三角形进行优化(互换对角线等)

5 返回第2

局部变换法:根据Delaunay三角剖分的性质2,首先构造一个不满足Delaunay三角剖分条件的三角网络,然后对两个共边三角形构成的凸四边形迭代换边使之满足Delaunay三角剖分的条件(主要是交换对角线的方法)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值