最近点意义下的Voronoi图的直线对偶图就是Delaunay三角剖分,因此可以把上上篇描述的构造Voronoi图的分治算法用于Delaunay三角剖分。
增量算法:易于实现,使用广泛,适合小规模点集的三角化。具体过程如下:
1 遍历所有散点,生成一个包含所有散点的大三角形(顶点不在点集中)
2 有未处理过的点p,插入之,否则结束算法,退出
3 在已剖分好的三角网中找出包含点p的三角形t,把p与t的三个顶点相连,构成三个三角形
4 根据优化准则对局部生成的三角形进行优化(互换对角线等)
5 返回第2步
局部变换法:根据Delaunay三角剖分的性质2,首先构造一个不满足Delaunay三角剖分条件的三角网络,然后对两个共边三角形构成的凸四边形迭代换边使之满足Delaunay三角剖分的条件(主要是交换对角线的方法)