多篇工业论文趋势:AI 在智联汽车 +具身智能的下一步?

image-20230708115431897

例如:

​ 1)在 backbone 环节,特征提取,其中涉及 BEV 和多模态等大模型技术。将一系列 多相机图像输入特征提取器,并将生成的特征通过 BEVFormer 中的现成 BEV 编码器转 换为统一鸟瞰图 (BEV) 特征 。 UniAD 并不局限于特定的 BEV 编码器,并且可以利用 其他替代方案通过长期时间融合或多模态融合 来提取更丰富的 BEV 表示。

​ 2)在感知环节,目标检测与跟踪模块可以实现对动态元素的特征提取、帧间物体跟踪。 检测和跟踪 agents。MapFormer 将 map queries 作为道路元素(例如,车道和分隔线) 的语义抽象(semantic abstractions),并对地图进行全景分割。

​ 3)预测模块,实现动静态元素交互与长时序轨迹预测,而且已经有“联合训练 AI”。 占据栅格预测模块实现了短时序全场景 BEV、实例级预测。由于每个单元的动作都会显着 影响场景中的其他,因此该模块对所有考虑的单元进行联合预测。

​ 4)在规划模块,基于轨迹预测,做防碰撞,其中涉及占用网络(Occupancy network) 等大模型技术。基于自身的轨迹预测和基于占据栅格的碰撞优化并使自己远离 OccFormer 预测的占用区域(occupied regions)以避免碰撞。

图 9:论文指数也每个环节的重要指标,且指出“联合训练 AI”的作用,例如两个识 别子任务大大帮助了运动预测

image-20230708115550490

​ 此前,端对端 AI 训练很容易出现的问题是:由于涉及环节太多、系统太复杂,很容易 出现“局部最优”和“梯度下降”问题。我们本来以为会用残差网络(ResNet)增加反馈 参数,来帮助自动驾驶大模型的训练。而论文提出的“联合训练 AI”,即预测联合训练、 预测规划一体训练,实现了“类似全局优化”,而“子任务”的引入也细化了环节。

​ 这篇论文的趋势可能会改变智联汽车+机器人的 AI 软件训练方式:尝试端对端,并用 一系列联合训练,来防止局部最优,达到更好的效果。

1.6 走势与小结

​ 《具身智能,1995-2001, 2013- 2015:如何避免 AI 正确赛道,错误公司?》与《写 在数字经济第三波:增加智联汽车+具身智能新机会!》,均论述了机器人(具身智能)与智联 汽车新机会。而本篇借鉴了特斯拉/UCLA/ CVPR2023 等领先论文,预测了后续智联汽车+ 机器人中 AI 大模型的使用。

​ 尽管有诸多 AI 大模型需要攻克的点(详见 UCLA 《Development and Real-Time Optimization-based Control of a Full-sized Humanoid for Dynamic Walking and Running》软件部分 7 点总结),但识别控制相关软件、基于感知的运动、学习与控 制交叉等问题,正在被逐渐解决。一旦 AI 训练资源足够,很可能后续的动作会更加多 样。

​ 此处重申几个选股建议:

​ 1) 考虑商业模式很重要。智联汽车、具身智能 BOT、大算力相关的计算机都是代表。

​ Alpha 例如德赛西威(tmt&汽车)、双环传动(申万汽车&机械)、鸣志电器(申万机 械)、萤石网络(tmt&家电)、中控技术(tmt&机械)、中科创达。

​ Beta 例如精锻科技(申万汽车)、步科股份(申万机械)、秦川机床(申万机械) 。

​ 2)计算机继续寻找更高赔率的公司。Q1 表现的很多已经市值较高,选择一批落地概 率较大的小市值。

​ 英方软件(已回调)、虹软科技、福昕软件、润达医疗(医药&tmt)、拓尔思、萤石 网络、万兴科技、科大讯飞(比起 5000 亿是小市值)、软通动力等。

​ 3)继续落实更高胜率的公司,当前底部白马就是一种。尤其部分白马曾被市场误以为 没有大模型能力。即已经调整较深、适合绝对收益的公司,尽管可能需要时间等待(之前 已经论述,2015 年它们走势较弱,2016-2020 年才出现较大机会)。

​ 例如纳思达、AI 双杰、恒生电子、中控技术、石基信息、广联达、用友网络等

​ 4)维持原有核心公司:金山办公、科大讯飞、同花顺、大华股份等。

2、当前 2023H1 业绩前瞻

2.1 23Q2/23H1 业绩前瞻

​ 中报濒临,我们预测了计算机部分重要公司 2023Q2 单季度的收入、利润,并提供了 明细分析师计算方法,如下。

图 10:2023Q2 & 2023H1 计算机重要公司业绩预测(时间为 6 月 30 日收盘时)

image-20230708120045443

2.2 23Q2 季报验证,当前重要性提高

​ 计算机行业 2023 年的重要机会,除了赛道创新(数字经济、AIGC、数据要素、信创), 还有“收入-成本”错配的拐点。接近2023Q2 披露时间 ,较多公司股价在偏高位置。中 期经营情况的验证,重要性增加了。

​ 目前,我们通过“收入-成本”错配准则,计算得到:23Q2 开始,行业可能会出现利 润弹性。22Q4/23Q1 行业收入增速分别为-7%/-3%,净利润增速分别为-50%/-17%。但 是,我们认为行业利润表增速的最低点应当就在 22Q4/23Q1 两个季度,从 23Q2 开始, 可能会出现行业利润弹性。

​ 23Q1 的薪酬成本增速已经处于近 5 年来的最低点,因此 23 年行业具备了“收入-成 本错配”正向剪刀差的坚实基础。2022 年各季度的薪酬成本增速较 2021 年各季度的薪酬 成本增速大幅下降。由于 2021 年各季度的人力增速相对较高,2022 年的人力增速逐季降 低,因此 2022 年各季度的薪酬成本增速呈现前高后低。22Q4/23Q1 的薪酬成本增速分别 为 11%/4%,由于 22Q4/23Q1 的人力增速都是 4%,意味着 22Q4/23Q1 的人均涨薪增 速分别仅为 7%/0%。由于外部行业环境以及需求情况,预计行业公司在业务扩张方面会继 续保持谨慎。假设 23Q2-Q4 行业的人均薪酬增速保持在 5%,人力增速保持在 4%的水平, 那么 23Q2-Q4 的薪酬成本增速会维持在 9%的较低水平。此外,由于 22Q2-Q4 的收入基 数不高,一旦 23Q2-Q4 的收入增速超过 10%,就会出现“收入-成本错配”的正向剪刀差。

​ 22Q4/23Q1 行业整体的毛利率维持在 29%,依然坚韧。一般而言,在行业收入增速 低迷时,行业公司会在毛利率和收入之间进行取舍。但是我们目前看到在收入增速低迷的 情况下,行业的毛利率依然坚韧,表明行业公司并没有通过降低毛利率的方式换取更多的 收入,显示出行业公司开始舍弃一味追求收入的规模和增速,而是更加注重高质量的发展。 此外,21Q4 开始实施了《企业会计准则应用指南(2020)第 14 号—收入》的财务新准则, 物流费用由原先的计入销售费用变成了计入营业成本,因此拉低了行业表观的毛利率,如 果剔除新准则的影响,行业毛利率则会在 30%以上。

​ 应收款和存货先导指标乐观。22Q4/23Q1,应收款和存货的增速进一步下降,这两个 指标增速越低,往往预示着公司的经营质量将会越高。具体来说,22Q4/23Q1 的应收款同 比增速分别仅为 10%/7%,存货的同比增速分别仅为 0%/-3%,表明行业的历史负担正在 逐步出清。

​ 预收款和商誉的增速符合预期。22Q4/23Q1 的预收款(考虑合同负债)分别同比上涨 5%/1%,当前从预收款(考虑合同负债)的维度尚无法观测到后续行业收入加速的信号。 但是,2023 年是“十四五”规划的第三年,预计 2023Q2-Q4 政府驱动的 IT 投资会逐季 加速。此外,累计商誉继续下滑,体现出行业公司在继续优化资产负债表。

表 1:2020Q1-2023Q1,计算机单季度业绩增速和先导指标(单位:%)

image-20230708120936583

注 1:以上均为单季度数据,且把该季度同比期间主业变更公司、st 公司剔除。

注 2:2023 扩展到 347 家公司,2022 年开始使用 303 家公司,2021Q4 扩展到 303 家公司,2020Q4 扩展到 273 家公司,2019Q4 扩展到 235 家公司,2018Q3 扩展到 205 家公司(2017Q3 也是)。2021 年及之前都不做回溯。

注 3:2019Q4 开始把“薪酬外成本”改成“薪酬外费用”,后者为毛利剔除薪酬。2019Q4 开始增加“毛利增速”并未做回溯,因此部 分历史项目未填写。

注 4:注意其他收益/减值/收入的会计准则变化。2017Q2 开始增值税退税计入其他收益而非营业外收入,2019Q2 开始减值损失负代替 正,2020Q1 开始新收入准则(14 号文),因此同时参考合同负债和收入更有意义,后续现金流分析会验证。

注 5:营业毛利取 WIND 公式,为营业收入与营业成本的差。收入取营业总收入。因此表中收入与成本的差并非严格等于毛利,存在小 范围误差。

注 6:员工数量只披露年末额,对年初年末员工数做线性平滑。例如:2017Q1 员工数=1/42016 年末额+3/42017 年末额。假设 2018 年末人员同比增 10%。这样员工增速重新调整但更接近于实际

注 7:由于 2020Q1 开始新收入准则,应收款/存货的同比意义不大,且未用矫正计算方法。预收款项用“预收款项+合同负债”做矫正 计算方法得到同比。

注 8:为方便同页显示完整变革,选取小数点 0 位精度。

注 9:2022Q4-2023Q1 主要减去 st 的股票。2023Q1 有大智慧、同方股份的非持续收益。若计入,2023Q1 利润同比增速高达约 30%, 若剔除则为表内数据。

注 10:标注红色的数字表示同比增速高,标注绿色的数字表示同比增速低。

3、大模型发布潮,重点是垂类

​ 3.1 大模型发布潮,重点是垂类

​ 经过 2023Q1 之后,“公司在拓展大模型”、“公司研发大模型”已经较为钝化。投 资者需要看到这些公司的工程化落地。

​ 由于近期发布的产品都普遍高于市场预期(例如星环科技、科大讯飞等),发布会或 为 AIGC 领域近期重要催化剂。近期恒生电子(与子公司恒生聚源)、拓尔思、中国电子 云的发布值得关注,直接关联恒生电子、拓尔思、深桑达。而近期腾讯、字节跳动、华为、 京东等科技巨头也有 AI 相关亮相。

表 2:近期的大模型或智能化相关发布或亮相

image-20230708121213102

3.2 恒生电子:赋能未来金融,AI+展望

​ 伴随 BloombergGPT 发布,后续金融等专业领域整合 LLM 能力产生可行性,直接受益 行业内有较多高质量数据、拥有良好客户资源公司。

​ 作为金融科技先行者,恒生电子 AI 技术积累自 2016 年开始,并在近期,管理层积极 拥抱 AI 大模型变化。根据恒生电子官方公众号 5 月发文,公司董事长刘曙峰表示,当前恒 生在局部点面上利用大数据和 AI 工具产生一定生产力。未来恒生电子有望充分利用已有的 智能投顾、投资投研一体化等产品优势,基于高质量数据整合 AI 能力,或在巨头大模型训 练类似 bloombergGPT 的行业专用模型,提升客户渗透率和付费意愿。

​ AI 大模型+智能投研产品,已经在智能投研平台 WarrenQ 开始研发测试。WarrenQ 是恒生聚源专为机构投资者打造的智能投研平台,通过融合人工智能和大数据技术,提供 智能搜索、智能监控、智能研报和数据浏览器等功能覆盖投研核心场景,为投研过程查数 据、看研报、跑模型、写报告提供一个沉浸式智能投研工作台。

​ 后续结合新的 AI 大模型,恒生有望与头部券商共同打造智能投研一体化平台,实用工 具迭代有望加快。2023 年后,恒生加快与券商研究所合作研发,投入建设智能投研平台, 一方面,通过集团数据中心获取更广泛的数据来源,构建研究所的知识沉淀库。另一方面, 平台基于金融知识图谱等技术打造产业链图谱平台,兼具动态研报和行业精确数据库的职 能,支持分析师从数据浏览、研究框架建设、研究报告撰写、估值定价模型的一站式功能。 通过在现有传统投研体系基础上进行转变和重构,着力打造智能投研平台行业标杆。

​ 除 warrenQ 投研平台以外,我们认为 AI 大模型有望和公司智能投顾、投资一体化等 产品结合。2022 年公司新一代资管产品 O45 全年上线 16 家客户,新一代证券经纪系 统 UF3.0 全年新签和上线多家公司。各项业务均同比快速增长。O45 相比前一代产品以 交易为核心,增加了 PMS 账户管理、量化测试平台、投资投研一体化接口等新功能点,以 上产品可以实现与 AI 大模型结合,新的功能点可能包括:自然语言投研一体化互动、AI 下单、AI 量化测试等。我们认为,恒生多年积累的交易、风控、金融数据规则库,有望成 为训练金融 AI 模型的较好原料。

​ 维持”买入“评级。预测2023-2025 收入为79.33、95.71、115.23 亿元,预测2023-2025 年净利润为 18.28、21.79、25.01 亿元。

4、深度研究:税友科技/Autodesk/德生科技

4.1 税友科技深度研究:立足税务,云程发轫

​ B、G 双轮驱动,产品覆盖企业票财税全链条。公司深耕税务软件二十余年,起家于 G 端税务 IT 系统端业务,2016 年以亿企赢品牌切入 B 端企业财税服务 SaaS 领域,自此 B、 G 交替驱动公司业绩增长,2022 年 B、G 端收入占比分别为 56%、43%。

​ B 端增长:留存+获客双重发力,收入高速增长。2020 年行业竞争加剧,公司收入增 速放缓。应对激烈竞争,公司进行客群分层经营,B 端收入逐渐回升:1)中小企业客群: 22 年付费用户数 60 万,ARPU 值 815 元,实现 ARR 收入 4.89 亿元,预计 25 年 ARR 收 入达 9.4 亿元;2)财税代理客群:22 年付费用户数 380 万, ARPU 值 111 元,实现 ARR 收入 4.2 亿元,预计 25 年 ARR 收入达 8.3 亿元。3)创新 SaaS 客群:22 年收入 1.2 亿元, 预计 25 年 ARR 收入达 2.5 亿元。

​ B 端竞争力:产品更好用、稳定盈利。B 端 SaaS 产品竞争激烈。税友优势来自 1)产 品功能类似,但更好用:通过 G 端 know-how,公司产品与竞对价格类似但自动化程度更 高;2)稳定盈利:凭借先发优势积累大规模用户,用户粘性强,先于其他竞对实现稳定盈 利,因而有望在同质化竞争中长跑并最终胜出。

​ B 端业务布局:创新 SaaS 瞄准新经济、灵活用工人群,卡位 C 端报税 SaaS。除企业 财税 SaaS,税友结合中国本土特点,围绕新经济、灵活用工等新业态推出创新 SaaS 业务, 目前帮助如中智等人力外包商完成个人社保、税务管理,未来向个人推广将打开收入天花 板。

​ G 端变化一:金税四期 24-25 年进入建设高峰期,核心供应商地位稳固。2022 下半 年,金税四期(简称“金四”)开启。截至目前税友已中标金四总局电子发票平台(二期)、 以及核心项目应用支撑平台 2 包,核心供应商地位稳固。23H1 电子发票平台已开启部分 地区试点,预计 24-25 年将在全国范围推广,届时金四建设将进入高峰期,驱动公司 G 端 业绩更上一层台阶。

​ G 端变化二:数据要素顶层设计加码,税务数据应用价值凸显。作为金四系统核心供 应商,公司承建系统内部流转丰富的税务数据,凭借优秀的数据应用和处理能力,公司已 在政务端拓展数据应用增值服务,未来该服务有望下沉至地市,做大 G 端蛋糕。

​ 我们预计,2023-2025 年收入为 20.04、24.26、29.85 亿元,同比增长 18%、21%、 23%,2023-2025 年实现净利润 2.83、3.96、4.97 亿元,同比增长 97%、40%、26%。

4.2 Autodesk 深度研究:全球工业设计软件领军,云化战 略进入收获期

​ 丰富的产品线体系。公司的产品可以划分为四大类型:1)建筑、工程与施工:为建筑 和城市基础设施提供设计、建模和管理服务。 2)AutoCAD 和 AutoCAD LT: 用于 2D/3D 设计、绘图和建模的通用型工业设计软件。3)产品设计与制造:为汽车、电子、工业机械 等行业提供全面的数字设计、工程、制造和生产解决方案。4)传媒和娱乐:为电影、游戏、 广告等行业提供建模、渲染、三维视觉特效、3D 设计和打印等功能。

​ 全球 CAD 领军。在 CAD 市场,Autodesk 的主要竞争对手有:Dassault、Siemens、 PTC、Bentley Systems。2021 年,在 CAD 领域,Dassault 的全球市场份额为 34%,位 居全球第一; Autodesk 的全球市场份额为 26%,位居全球第二。明星产品 AutoCAD 的 优势:1)操作简单,无需编程基础;2)支持跨设备使用,用户可以在任何时间、任何地 点开展工作;3)版本升级和迭代速度很快。 CAD 软件超百亿美元市场规模支撑公司后续发展空间。2023 年,预计全球 CAD 软件的市 场规模为 112.2 亿美元,2028 年,预计全球 CAD 软件的市场规模将增至 138.3 亿美元, 5 年累积上涨 23%,CAGR 为 4%。2028 年,假设 Autodesk 在 CAD 软件领域的全球市 场份额为 20%,那么公司 CAD 软件收入将达到 28 亿美元,较 2023 年的 13.87 亿美元累 积上涨 99%,CAGR 为 15%。

​ 云化转型战略进入收获期。1)订阅业务在总收入中的占比达到 93%。2019 年 – 2023 年,公司处于云转型收获期,公司的收入累积增长 95%,净利润累积增长 1119%。2)云 化转型成果受到市场投资者的认可。自从 2014 年公司宣布云化转型战略以来,公司的股价 从约 50 美元增长到目前的约 200 美元,累积上涨约 300%。3)云化战略转型铸就可持续 发展基石。2023 年,估计 Subscription plan ARR 在公司收入中的占比为 97%,近三年 增速维持在平均 16%的水平。云化转型使得公司的产品保持了极强的用户粘性,铸就了公 司可持续发展的基石。

​ 公司竞争力:研发/全球化/话语权。1)高研发费用投入保持行业领先。在最近一个财 年,公司的研发费用为 12.19 亿美元,研发费用率为 24%,均位居可比公司第一名。2) 收入全球化。2023 年,公司美洲地区收入占比 42%;欧洲、中东和非洲地区收入占比 38%; 亚太地区收入占比 20%。收入的全球化有助于分散地缘经济和政治风险。此外,2018 年 – 2023 年,除美国之外的美洲地区的收入 CAGR 为 23%,是增速最快的区域;其次是亚太 地区,收入 CAGR 为 22%。新兴市场特别是拉美市场以及亚太市场的崛起为公司未来收入 的持续稳定增长提供了有力的支撑。3)公司对上游供应商和下游客户拥有议价优势。在上 游供应商方面,软硬件供应商之间的市场竞争激烈,Autodesk 对上游供应商拥有议价优势。 在下游客户方面,公司的客户数量多且分散在全球,单个客户很难对公司有议价能力。

4.3 德生科技深度研究

​ 我们发布《德生科技深度研究:“一卡通”迎新周期,数据产品焕新活力》。

​ 公司业务逻辑清晰,已经形成围绕居民和场景的两大商业闭环:

​ 1) 以“卡”为核心:

​ 在数字政府的指导和需求下,银行作为主要付费方,德生提供综合的面向居民和政 府的民生服务。

​ 核心是通过持续的一卡通场景建设,提高使用频率,拉动更为活跃的交易和资金流 动,从而为银行创造价值。

​ 2) 以“数据”为核心:

​ 在一卡通及场景建设过程中,沉淀了大量的民生数据,公司在政府指导下,叠加自 身数据资源和技术能力,可进行数据的开发运营,形成标准化的数据产品。目前公 司四款数据产品已上架福建数交所、贵阳数交所。

​ 在数据产品的深度开发过程中,可以进一步实现数据运营服务,此类数据可以精确 到个人,服务对象主要是政府相关部门,目前在就业服务场景下实践广泛,在贵州 毕节等地已有对应案例。

图 11 形成“卡”和“数据”两大商业闭环

image-20230708121316031

​ 两个商业闭环相辅相成,是数据类产品和交易中较为清晰的逻辑。同时,也通过数据 沉淀和数据支撑,来形成了坚实的壁垒。一卡通建设为数据开发提供场景,数据运营又能 进一步提升一卡通实现的价值,形成良性循环,不断加深“护城河”。

image-20230708124132808

​ 第一,短期换卡周期,长期场景丰富

​ 第三代社保卡是数字货币的重要载体。数字货币是可以直接覆盖全民的推广渠道;社 保卡是最适宜发挥数字货币价值的应用场景(智能合约,精准补贴)。随着数字人民币的 全面推行,叠加智能合约功能后,有望再次丰富一卡通应用场景和空间。

​ 1)三代卡周期+软件比例提升带来成长。

​ 从公司业务来看,居民一卡通相关的业务可以再分为卡(载体)、硬件配套、软件平 台三部分。

​ 短期看,受益于卡+设备的“三代替换周期”,将实现业绩快速增长;长期看,受益于 硬件基础,软件产品粘性高且利润率高,将支撑公司长期成长。

​ 其中,一卡通卡体本身的价值量相对固定,预计 10 元/张,公司 2022 年发卡 3600 万张,销售收入同比增近 64%,收入主要基本来自银行;

​ 硬件配套主要基于场景建设,包括三代卡补换设备、身份识别终端等相关的硬件,客 户主要是银行,本质算做银行的网点建设拓展,目的是资金和服务的沉淀。

​ 软件平台利润率高,未来有望支撑长期成长。主要包括卡管系统、密服系统、公民权 益链平台等应用软件和平台。搭配卡、硬件销售,付费方是银行、政府。(终端相关管理 多为银行,涉及民生管理等为政府,估算 80%以上是银行买单)

​ 公司 2022 年一卡通及 AIOT 应用收入 6.98 亿元,对应公司发卡 3600 万张,单卡价 值量约 19 元(包含卡体本身约 10 元),实际部分硬件设备建设已经前置,收入确认在此 前两年,因此后期随着发卡量的持续提升,软件建设逐渐完善,会带动单卡价值量的明显 上升。

​ 2)场景不断突破,提升未来业务空间。

​ 山东省参股子公司,将一卡通深入消费券等业务,验证场景可持续突破。

​ 与山东财金发展等股东联合成立山东惠民数字科技有限公司,是公司参照北京民生一 卡通项目成功经验在山东消费券及惠民利企补贴场景的落地应用。公司将通过该公司深入 开展业务创新,依托“社会保障卡 惠享山东行”活动平台,充分利用社会保障卡实名画像 和广覆盖的特点,形成千人千面的定制型消费券,既发挥“促消费”的作用,又能实现精 准的“保民生”效果。

​ 本合作是公司对社会保障卡作为“国民账户”这一认知的具体实践,也是公司进一步 探索“民生数据,服务民生”的新尝试。验证应用场景可实现突破。

image-20230708124406117

​ 第二,人社数据运营的可能

​ 1)面向政府的“劳动力大数据分析应用平台”

​ 产品主要协助政府实现从“被动”就业服务,到主动精准触达。精确到个人情况,协 助政府部门完成更高质量的就业服务。

​ 据公司年报,公司在贵州省打造了“毕节模式”服务样板,搭建了面向全市 600 多万 劳动力的大数据平台。以区县为对象,采用 SAAS 模式,以“县乡村”三级联动平台和服 务工厂数字化运营平台为工具,以互联网运营为手段,搭建乡村经纪人网络,在政府与个人之间建立长期、互信的交互链路,实现动态的数据回流与政府服务的精准触达,帮助政 府提高公共就业服务效率,快速实现就业服务的规模扩张。

​ 2)面向用工企业和蓝领为主的,互联网化运营的“人才快递”

​ 公司于 2021 年收购金色华勤 51%股权,旗下“亲亲小保”是互联网运营思维下的就 业服务,主要面向用工企业和蓝领就业者。据公司年报,截至 2022 年底,APP 注册用户 数已达 300 多万,付费企业接近 2 万家,“人才快递”直播招聘业务已经联合 1000 多家 服务机构,覆盖 25 个省份。助力“用工企业-求职个人-政府机构”的数据打通,更好促进 就业市场。

​ 3)数据产品上架,商业模式已经打通

​ 四款数据产品成功上架两家数交所。据公司公告,公司基于长期数据能力沉淀,目前 已有四款数据产品上线福建数交所、贵阳数交所,是首批签约入驻福建大数据交易所的 15 家数据经纪人之一,目前数据产品主要包括“城市就业分析”、“个人职业背景调查”、 “失业保险业务核验”、“养老保险业务核验”。

​ 数据底层能力已经具备,政策指导下未来空间更为广阔。公司现阶段已经完成底层数 据能力积累,在现有可行商业模式中,打造了完成的数据产品,以个人职业背景调查产品 为例:

​ 以本地户籍数据、外来人口数据、人社就业数据、公安违法违规数据及社会数据等为 支撑,可按照委托方及应聘候选人提供的基础信息,通过专业调查流程、算法逻辑形成背 调报告。本产品向获得当事人授权的单位或个人提供查看权限,以精准匹配、降低招聘风 险为目的,应用于人力资源公司职业背景调查,招聘单位的员工入职尽调;或为企业对在 职高管及员工、进行定期职业风险评估提供参考。

图 15:公司数据产品商业模式已经完整

image-20230708121559418

​ 公司已经具备数据交易核心能力,短期内可以将能力提供给政府侧,未来有望成为“卖 铲子的人”,将处理方式工具化,帮助政府卖由数据生成的产品,实现数据资源价值最大 化。未来随着数据交易的进一步规范化,公司通过已经具备细分领域处理的优势,民生领 域资源禀赋突出,将充分受益。

5、风险偏好判断以及重点标的

​ 5.1 风险偏好判断

​ 增加“核心配置栏目”的原因:2019-2023 年计算机可能 PE 波动大,研究风险偏好 很重要。风险偏好判断更加重要。下图是说明。

​ 2021 年第一次机会:年初开始。

​ 2021 年第二次机会:预计 5 月底达到计算机风险偏好低点,开始上行。

​ 2022 年第一次机会:4-5 月风险偏好筑底,6 月初进入“黄色区域”

​ 2022 年 10 底分软件、嵌入式软件分别绘制,因为已经有差别。

​ 2023 年由于主线弹性、领军公司都有机会,下属标的按照赛道重新划分。

​ 2022 年 8 月底,出现白马连续调整,计算机低配置+低关注,且较多投资人看继续调 整,这样一般是投资机会底部区域。预计表现约两年。

图 16:软件当前的风险偏好 图 图 17:嵌入式软件当前的风险偏好

image-20230708121724549

​ 5.2 数字经济领军

​ 德赛西威+恒生电子+英方软件 +中控技术(也是 AI)+启明星辰+大华股份等+广联达(也是 AIGC)+ 赛意信息+ 科大讯飞

​ 5.3 AIGC 算力

​ 中科曙光+浪潮信息+寒武纪+海光信息等

​ 5.4 AIGC&数据弹性,2023 年

​ 拓尔思+汉得信息(与鼎捷泛微类似,OA ERP AIGC 近期催化)+润达医疗(申 万医药等)+虹软科技(受益于 SAM 模型)+福昕软件(AIGC 新成长)+萤石网 络+ 星环科技+新国都+万兴科技 +金山办公+广电运通+上海钢联+ 深桑达+ 久远银海。

​ 5.5 信创弹性,2023 年

​ 纳思达+软通动力+太极股份+深信服+深桑达+中国软件+海量数据

​ 5.6 港股核心

​ 中国民航信息网络(H,提前)、明源云(H,年报经营出色,估值弹性)、金蝶国 际(H,弹性最大的云之一)、中国软件国际(H,发布深度)。

​ 5.7 智联汽车

​ 德赛西威、中科创达、经纬恒润。

​ 5.8 医疗信息化(宏观弱相关,但估值偏高)

​ 卫宁健康、创业慧康、久远银海、和仁科技等。

​ 6、风险

​ 由于复工环境等扰动,2022-2023 年内存在业绩波动风险。

​ 计算机行业一向的风险依然是研究竞争、产业链地位与管理。若难以相对准确地把握, 可能会选中了次好的公司,对投资产生不良的结果。

​ 此外,我们预测 2021-2022H1 涨薪扩人高峰后,2022H2-2023 年会“适应性调节” 成本扩张缓和。如果企业主依然选择长期激进扩张,会影响行业年度盈利和增长。

​ 如果外部物流环境长期不佳,或影响短期季度的同比增速,递延翻转结论。

表 3:计算机估值简表(单位:亿元,元)

image-20230708121931104

image-20230708121956544

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值