例如:
1)在 backbone 环节,特征提取,其中涉及 BEV 和多模态等大模型技术。将一系列 多相机图像输入特征提取器,并将生成的特征通过 BEVFormer 中的现成 BEV 编码器转 换为统一鸟瞰图 (BEV) 特征 。 UniAD 并不局限于特定的 BEV 编码器,并且可以利用 其他替代方案通过长期时间融合或多模态融合 来提取更丰富的 BEV 表示。
2)在感知环节,目标检测与跟踪模块可以实现对动态元素的特征提取、帧间物体跟踪。 检测和跟踪 agents。MapFormer 将 map queries 作为道路元素(例如,车道和分隔线) 的语义抽象(semantic abstractions),并对地图进行全景分割。
3)预测模块,实现动静态元素交互与长时序轨迹预测,而且已经有“联合训练 AI”。 占据栅格预测模块实现了短时序全场景 BEV、实例级预测。由于每个单元的动作都会显着 影响场景中的其他,因此该模块对所有考虑的单元进行联合预测。
4)在规划模块,基于轨迹预测,做防碰撞,其中涉及占用网络(Occupancy network) 等大模型技术。基于自身的轨迹预测和基于占据栅格的碰撞优化并使自己远离 OccFormer 预测的占用区域(occupied regions)以避免碰撞。
图 9:论文指数也每个环节的重要指标,且指出“联合训练 AI”的作用,例如两个识 别子任务大大帮助了运动预测
此前,端对端 AI 训练很容易出现的问题是:由于涉及环节太多、系统太复杂,很容易 出现“局部最优”和“梯度下降”问题。我们本来以为会用残差网络(ResNet)增加反馈 参数,来帮助自动驾驶大模型的训练。而论文提出的“联合训练 AI”,即预测联合训练、 预测规划一体训练,实现了“类似全局优化”,而“子任务”的引入也细化了环节。
这篇论文的趋势可能会改变智联汽车+机器人的 AI 软件训练方式:尝试端对端,并用 一系列联合训练,来防止局部最优,达到更好的效果。
1.6 走势与小结
《具身智能,1995-2001, 2013- 2015:如何避免 AI 正确赛道,错误公司?》与《写 在数字经济第三波:增加智联汽车+具身智能新机会!》,均论述了机器人(具身智能)与智联 汽车新机会。而本篇借鉴了特斯拉/UCLA/ CVPR2023 等领先论文,预测了后续智联汽车+ 机器人中 AI 大模型的使用。
尽管有诸多 AI 大模型需要攻克的点(详见 UCLA 《Development and Real-Time Optimization-based Control of a Full-sized Humanoid for Dynamic Walking and Running》软件部分 7 点总结),但识别控制相关软件、基于感知的运动、学习与控 制交叉等问题,正在被逐渐解决。一旦 AI 训练资源足够,很可能后续的动作会更加多 样。
此处重申几个选股建议:
1) 考虑商业模式很重要。智联汽车、具身智能 BOT、大算力相关的计算机都是代表。
Alpha 例如德赛西威(tmt&汽车)、双环传动(申万汽车&机械)、鸣志电器(申万机 械)、萤石网络(tmt&家电)、中控技术(tmt&机械)、中科创达。
Beta 例如精锻科技(申万汽车)、步科股份(申万机械)、秦川机床(申万机械) 。
2)计算机继续寻找更高赔率的公司。Q1 表现的很多已经市值较高,选择一批落地概 率较大的小市值。
英方软件(已回调)、虹软科技、福昕软件、润达医疗(医药&tmt)、拓尔思、萤石 网络、万兴科技、科大讯飞(比起 5000 亿是小市值)、软通动力等。
3)继续落实更高胜率的公司,当前底部白马就是一种。尤其部分白马曾被市场误以为 没有大模型能力。即已经调整较深、适合绝对收益的公司,尽管可能需要时间等待(之前 已经论述,2015 年它们走势较弱,2016-2020 年才出现较大机会)。
例如纳思达、AI 双杰、恒生电子、中控技术、石基信息、广联达、用友网络等
4)维持原有核心公司:金山办公、科大讯飞、同花顺、大华股份等。
2、当前 2023H1 业绩前瞻
2.1 23Q2/23H1 业绩前瞻
中报濒临,我们预测了计算机部分重要公司 2023Q2 单季度的收入、利润,并提供了 明细分析师计算方法,如下。
图 10:2023Q2 & 2023H1 计算机重要公司业绩预测(时间为 6 月 30 日收盘时)
2.2 23Q2 季报验证,当前重要性提高
计算机行业 2023 年的重要机会,除了赛道创新(数字经济、AIGC、数据要素、信创), 还有“收入-成本”错配的拐点。接近2023Q2 披露时间 ,较多公司股价在偏高位置。中 期经营情况的验证,重要性增加了。
目前,我们通过“收入-成本”错配准则,计算得到:23Q2 开始,行业可能会出现利 润弹性。22Q4/23Q1 行业收入增速分别为-7%/-3%,净利润增速分别为-50%/-17%。但 是,我们认为行业利润表增速的最低点应当就在 22Q4/23Q1 两个季度,从 23Q2 开始, 可能会出现行业利润弹性。
23Q1 的薪酬成本增速已经处于近 5 年来的最低点,因此 23 年行业具备了“收入-成 本错配”正向剪刀差的坚实基础。2022 年各季度的薪酬成本增速较 2021 年各季度的薪酬 成本增速大幅下降。由于 2021 年各季度的人力增速相对较高,2022 年的人力增速逐季降 低,因此 2022 年各季度的薪酬成本增速呈现前高后低。22Q4/23Q1 的薪酬成本增速分别 为 11%/4%,由于 22Q4/23Q1 的人力增速都是 4%,意味着 22Q4/23Q1 的人均涨薪增 速分别仅为 7%/0%。由于外部行业环境以及需求情况,预计行业公司在业务扩张方面会继 续保持谨慎。假设 23Q2-Q4 行业的人均薪酬增速保持在 5%,人力增速保持在 4%的水平, 那么 23Q2-Q4 的薪酬成本增速会维持在 9%的较低水平。此外,由于 22Q2-Q4 的收入基 数不高,一旦 23Q2-Q4 的收入增速超过 10%,就会出现“收入-成本错配”的正向剪刀差。
22Q4/23Q1 行业整体的毛利率维持在 29%,依然坚韧。一般而言,在行业收入增速 低迷时,行业公司会在毛利率和收入之间进行取舍。但是我们目前看到在收入增速低迷的 情况下,行业的毛利率依然坚韧,表明行业公司并没有通过降低毛利率的方式换取更多的 收入,显示出行业公司开始舍弃一味追求收入的规模和增速,而是更加注重高质量的发展。 此外,21Q4 开始实施了《企业会计准则应用指南(2020)第 14 号—收入》的财务新准则, 物流费用由原先的计入销售费用变成了计入营业成本,因此拉低了行业表观的毛利率,如 果剔除新准则的影响,行业毛利率则会在 30%以上。
应收款和存货先导指标乐观。22Q4/23Q1,应收款和存货的增速进一步下降,这两个 指标增速越低,往往预示着公司的经营质量将会越高。具体来说,22Q4/23Q1 的应收款同 比增速分别仅为 10%/7%,存货的同比增速分别仅为 0%/-3%,表明行业的历史负担正在 逐步出清。
预收款和商誉的增速符合预期。22Q4/23Q1 的预收款(考虑合同负债)分别同比上涨 5%/1%,当前从预收款(考虑合同负债)的维度尚无法观测到后续行业收入加速的信号。 但是,2023 年是“十四五”规划的第三年,预计 2023Q2-Q4 政府驱动的 IT 投资会逐季 加速。此外,累计商誉继续下滑,体现出行业公司在继续优化资产负债表。
表 1:2020Q1-2023Q1,计算机单季度业绩增速和先导指标(单位:%)
注 1:以上均为单季度数据,且把该季度同比期间主业变更公司、st 公司剔除。
注 2:2023 扩展到 347 家公司,2022 年开始使用 303 家公司,2021Q4 扩展到 303 家公司,2020Q4 扩展到 273 家公司,2019Q4 扩展到 235 家公司,2018Q3 扩展到 205 家公司(2017Q3 也是)。2021 年及之前都不做回溯。
注 3:2019Q4 开始把“薪酬外成本”改成“薪酬外费用”,后者为毛利剔除薪酬。2019Q4 开始增加“毛利增速”并未做回溯,因此部 分历史项目未填写。
注 4:注意其他收益/减值/收入的会计准则变化。2017Q2 开始增值税退税计入其他收益而非营业外收入,2019Q2 开始减值损失负代替 正,2020Q1 开始新收入准则(14 号文),因此同时参考合同负债和收入更有意义,后续现金流分析会验证。
注 5:营业毛利取 WIND 公式,为营业收入与营业成本的差。收入取营业总收入。因此表中收入与成本的差并非严格等于毛利,存在小 范围误差。
注 6:员工数量只披露年末额,对年初年末员工数做线性平滑。例如:2017Q1 员工数=1/42016 年末额+3/42017 年末额。假设 2018 年末人员同比增 10%。这样员工增速重新调整但更接近于实际
注 7:由于 2020Q1 开始新收入准则,应收款/存货的同比意义不大,且未用矫正计算方法。预收款项用“预收款项+合同负债”做矫正 计算方法得到同比。
注 8:为方便同页显示完整变革,选取小数点 0 位精度。
注 9:2022Q4-2023Q1 主要减去 st 的股票。2023Q1 有大智慧、同方股份的非持续收益。若计入,2023Q1 利润同比增速高达约 30%, 若剔除则为表内数据。
注 10:标注红色的数字表示同比增速高,标注绿色的数字表示同比增速低。
3、大模型发布潮,重点是垂类
3.1 大模型发布潮,重点是垂类
经过 2023Q1 之后,“公司在拓展大模型”、“公司研发大模型”已经较为钝化。投 资者需要看到这些公司的工程化落地。
由于近期发布的产品都普遍高于市场预期(例如星环科技、科大讯飞等),发布会或 为 AIGC 领域近期重要催化剂。近期恒生电子(与子公司恒生聚源)、拓尔思、中国电子 云的发布值得关注,直接关联恒生电子、拓尔思、深桑达。而近期腾讯、字节跳动、华为、 京东等科技巨头也有 AI 相关亮相。
表 2:近期的大模型或智能化相关发布或亮相
3.2 恒生电子:赋能未来金融,AI+展望
伴随 BloombergGPT 发布,后续金融等专业领域整合 LLM 能力产生可行性,直接受益 行业内有较多高质量数据、拥有良好客户资源公司。
作为金融科技先行者,恒生电子 AI 技术积累自 2016 年开始,并在近期,管理层积极 拥抱 AI 大模型变化。根据恒生电子官方公众号 5 月发文,公司董事长刘曙峰表示,当前恒 生在局部点面上利用大数据和 AI 工具产生一定生产力。未来恒生电子有望充分利用已有的 智能投顾、投资投研一体化等产品优势,基于高质量数据整合 AI 能力,或在巨头大模型训 练类似 bloombergGPT 的行业专用模型,提升客户渗透率和付费意愿。
AI 大模型+智能投研产品,已经在智能投研平台 WarrenQ 开始研发测试。WarrenQ 是恒生聚源专为机构投资者打造的智能投研平台,通过融合人工智能和大数据技术,提供 智能搜索、智能监控、智能研报和数据浏览器等功能覆盖投研核心场景,为投研过程查数 据、看研报、跑模型、写报告提供一个沉浸式智能投研工作台。
后续结合新的 AI 大模型,恒生有望与头部券商共同打造智能投研一体化平台,实用工 具迭代有望加快。2023 年后,恒生加快与券商研究所合作研发,投入建设智能投研平台, 一方面,通过集团数据中心获取更广泛的数据来源,构建研究所的知识沉淀库。另一方面, 平台基于金融知识图谱等技术打造产业链图谱平台,兼具动态研报和行业精确数据库的职 能,支持分析师从数据浏览、研究框架建设、研究报告撰写、估值定价模型的一站式功能。 通过在现有传统投研体系基础上进行转变和重构,着力打造智能投研平台行业标杆。
除 warrenQ 投研平台以外,我们认为 AI 大模型有望和公司智能投顾、投资一体化等 产品结合。2022 年公司新一代资管产品 O45 全年上线 16 家客户,新一代证券经纪系 统 UF3.0 全年新签和上线多家公司。各项业务均同比快速增长。O45 相比前一代产品以 交易为核心,增加了 PMS 账户管理、量化测试平台、投资投研一体化接口等新功能点,以 上产品可以实现与 AI 大模型结合,新的功能点可能包括:自然语言投研一体化互动、AI 下单、AI 量化测试等。我们认为,恒生多年积累的交易、风控、金融数据规则库,有望成 为训练金融 AI 模型的较好原料。
维持”买入“评级。预测2023-2025 收入为79.33、95.71、115.23 亿元,预测2023-2025 年净利润为 18.28、21.79、25.01 亿元。
4、深度研究:税友科技/Autodesk/德生科技
4.1 税友科技深度研究:立足税务,云程发轫
B、G 双轮驱动,产品覆盖企业票财税全链条。公司深耕税务软件二十余年,起家于 G 端税务 IT 系统端业务,2016 年以亿企赢品牌切入 B 端企业财税服务 SaaS 领域,自此 B、 G 交替驱动公司业绩增长,2022 年 B、G 端收入占比分别为 56%、43%。
B 端增长:留存+获客双重发力,收入高速增长。2020 年行业竞争加剧,公司收入增 速放缓。应对激烈竞争,公司进行客群分层经营,B 端收入逐渐回升:1)中小企业客群: 22 年付费用户数 60 万,ARPU 值 815 元,实现 ARR 收入 4.89 亿元,预计 25 年 ARR 收 入达 9.4 亿元;2)财税代理客群:22 年付费用户数 380 万, ARPU 值 111 元,实现 ARR 收入 4.2 亿元,预计 25 年 ARR 收入达 8.3 亿元。3)创新 SaaS 客群:22 年收入 1.2 亿元, 预计 25 年 ARR 收入达 2.5 亿元。
B 端竞争力:产品更好用、稳定盈利。B 端 SaaS 产品竞争激烈。税友优势来自 1)产 品功能类似,但更好用:通过 G 端 know-how,公司产品与竞对价格类似但自动化程度更 高;2)稳定盈利:凭借先发优势积累大规模用户,用户粘性强,先于其他竞对实现稳定盈 利,因而有望在同质化竞争中长跑并最终胜出。
B 端业务布局:创新 SaaS 瞄准新经济、灵活用工人群,卡位 C 端报税 SaaS。除企业 财税 SaaS,税友结合中国本土特点,围绕新经济、灵活用工等新业态推出创新 SaaS 业务, 目前帮助如中智等人力外包商完成个人社保、税务管理,未来向个人推广将打开收入天花 板。
G 端变化一:金税四期 24-25 年进入建设高峰期,核心供应商地位稳固。2022 下半 年,金税四期(简称“金四”)开启。截至目前税友已中标金四总局电子发票平台(二期)、 以及核心项目应用支撑平台 2 包,核心供应商地位稳固。23H1 电子发票平台已开启部分 地区试点,预计 24-25 年将在全国范围推广,届时金四建设将进入高峰期,驱动公司 G 端 业绩更上一层台阶。
G 端变化二:数据要素顶层设计加码,税务数据应用价值凸显。作为金四系统核心供 应商,公司承建系统内部流转丰富的税务数据,凭借优秀的数据应用和处理能力,公司已 在政务端拓展数据应用增值服务,未来该服务有望下沉至地市,做大 G 端蛋糕。
我们预计,2023-2025 年收入为 20.04、24.26、29.85 亿元,同比增长 18%、21%、 23%,2023-2025 年实现净利润 2.83、3.96、4.97 亿元,同比增长 97%、40%、26%。
4.2 Autodesk 深度研究:全球工业设计软件领军,云化战 略进入收获期
丰富的产品线体系。公司的产品可以划分为四大类型:1)建筑、工程与施工:为建筑 和城市基础设施提供设计、建模和管理服务。 2)AutoCAD 和 AutoCAD LT: 用于 2D/3D 设计、绘图和建模的通用型工业设计软件。3)产品设计与制造:为汽车、电子、工业机械 等行业提供全面的数字设计、工程、制造和生产解决方案。4)传媒和娱乐:为电影、游戏、 广告等行业提供建模、渲染、三维视觉特效、3D 设计和打印等功能。
全球 CAD 领军。在 CAD 市场,Autodesk 的主要竞争对手有:Dassault、Siemens、 PTC、Bentley Systems。2021 年,在 CAD 领域,Dassault 的全球市场份额为 34%,位 居全球第一; Autodesk 的全球市场份额为 26%,位居全球第二。明星产品 AutoCAD 的 优势:1)操作简单,无需编程基础;2)支持跨设备使用,用户可以在任何时间、任何地 点开展工作;3)版本升级和迭代速度很快。 CAD 软件超百亿美元市场规模支撑公司后续发展空间。2023 年,预计全球 CAD 软件的市 场规模为 112.2 亿美元,2028 年,预计全球 CAD 软件的市场规模将增至 138.3 亿美元, 5 年累积上涨 23%,CAGR 为 4%。2028 年,假设 Autodesk 在 CAD 软件领域的全球市 场份额为 20%,那么公司 CAD 软件收入将达到 28 亿美元,较 2023 年的 13.87 亿美元累 积上涨 99%,CAGR 为 15%。
云化转型战略进入收获期。1)订阅业务在总收入中的占比达到 93%。2019 年 – 2023 年,公司处于云转型收获期,公司的收入累积增长 95%,净利润累积增长 1119%。2)云 化转型成果受到市场投资者的认可。自从 2014 年公司宣布云化转型战略以来,公司的股价 从约 50 美元增长到目前的约 200 美元,累积上涨约 300%。3)云化战略转型铸就可持续 发展基石。2023 年,估计 Subscription plan ARR 在公司收入中的占比为 97%,近三年 增速维持在平均 16%的水平。云化转型使得公司的产品保持了极强的用户粘性,铸就了公 司可持续发展的基石。
公司竞争力:研发/全球化/话语权。1)高研发费用投入保持行业领先。在最近一个财 年,公司的研发费用为 12.19 亿美元,研发费用率为 24%,均位居可比公司第一名。2) 收入全球化。2023 年,公司美洲地区收入占比 42%;欧洲、中东和非洲地区收入占比 38%; 亚太地区收入占比 20%。收入的全球化有助于分散地缘经济和政治风险。此外,2018 年 – 2023 年,除美国之外的美洲地区的收入 CAGR 为 23%,是增速最快的区域;其次是亚太 地区,收入 CAGR 为 22%。新兴市场特别是拉美市场以及亚太市场的崛起为公司未来收入 的持续稳定增长提供了有力的支撑。3)公司对上游供应商和下游客户拥有议价优势。在上 游供应商方面,软硬件供应商之间的市场竞争激烈,Autodesk 对上游供应商拥有议价优势。 在下游客户方面,公司的客户数量多且分散在全球,单个客户很难对公司有议价能力。
4.3 德生科技深度研究
我们发布《德生科技深度研究:“一卡通”迎新周期,数据产品焕新活力》。
公司业务逻辑清晰,已经形成围绕居民和场景的两大商业闭环:
1) 以“卡”为核心:
在数字政府的指导和需求下,银行作为主要付费方,德生提供综合的面向居民和政 府的民生服务。
核心是通过持续的一卡通场景建设,提高使用频率,拉动更为活跃的交易和资金流 动,从而为银行创造价值。
2) 以“数据”为核心:
在一卡通及场景建设过程中,沉淀了大量的民生数据,公司在政府指导下,叠加自 身数据资源和技术能力,可进行数据的开发运营,形成标准化的数据产品。目前公 司四款数据产品已上架福建数交所、贵阳数交所。
在数据产品的深度开发过程中,可以进一步实现数据运营服务,此类数据可以精确 到个人,服务对象主要是政府相关部门,目前在就业服务场景下实践广泛,在贵州 毕节等地已有对应案例。
图 11 形成“卡”和“数据”两大商业闭环
两个商业闭环相辅相成,是数据类产品和交易中较为清晰的逻辑。同时,也通过数据 沉淀和数据支撑,来形成了坚实的壁垒。一卡通建设为数据开发提供场景,数据运营又能 进一步提升一卡通实现的价值,形成良性循环,不断加深“护城河”。
第一,短期换卡周期,长期场景丰富
第三代社保卡是数字货币的重要载体。数字货币是可以直接覆盖全民的推广渠道;社 保卡是最适宜发挥数字货币价值的应用场景(智能合约,精准补贴)。随着数字人民币的 全面推行,叠加智能合约功能后,有望再次丰富一卡通应用场景和空间。
1)三代卡周期+软件比例提升带来成长。
从公司业务来看,居民一卡通相关的业务可以再分为卡(载体)、硬件配套、软件平 台三部分。
短期看,受益于卡+设备的“三代替换周期”,将实现业绩快速增长;长期看,受益于 硬件基础,软件产品粘性高且利润率高,将支撑公司长期成长。
其中,一卡通卡体本身的价值量相对固定,预计 10 元/张,公司 2022 年发卡 3600 万张,销售收入同比增近 64%,收入主要基本来自银行;
硬件配套主要基于场景建设,包括三代卡补换设备、身份识别终端等相关的硬件,客 户主要是银行,本质算做银行的网点建设拓展,目的是资金和服务的沉淀。
软件平台利润率高,未来有望支撑长期成长。主要包括卡管系统、密服系统、公民权 益链平台等应用软件和平台。搭配卡、硬件销售,付费方是银行、政府。(终端相关管理 多为银行,涉及民生管理等为政府,估算 80%以上是银行买单)
公司 2022 年一卡通及 AIOT 应用收入 6.98 亿元,对应公司发卡 3600 万张,单卡价 值量约 19 元(包含卡体本身约 10 元),实际部分硬件设备建设已经前置,收入确认在此 前两年,因此后期随着发卡量的持续提升,软件建设逐渐完善,会带动单卡价值量的明显 上升。
2)场景不断突破,提升未来业务空间。
山东省参股子公司,将一卡通深入消费券等业务,验证场景可持续突破。
与山东财金发展等股东联合成立山东惠民数字科技有限公司,是公司参照北京民生一 卡通项目成功经验在山东消费券及惠民利企补贴场景的落地应用。公司将通过该公司深入 开展业务创新,依托“社会保障卡 惠享山东行”活动平台,充分利用社会保障卡实名画像 和广覆盖的特点,形成千人千面的定制型消费券,既发挥“促消费”的作用,又能实现精 准的“保民生”效果。
本合作是公司对社会保障卡作为“国民账户”这一认知的具体实践,也是公司进一步 探索“民生数据,服务民生”的新尝试。验证应用场景可实现突破。
第二,人社数据运营的可能
1)面向政府的“劳动力大数据分析应用平台”
产品主要协助政府实现从“被动”就业服务,到主动精准触达。精确到个人情况,协 助政府部门完成更高质量的就业服务。
据公司年报,公司在贵州省打造了“毕节模式”服务样板,搭建了面向全市 600 多万 劳动力的大数据平台。以区县为对象,采用 SAAS 模式,以“县乡村”三级联动平台和服 务工厂数字化运营平台为工具,以互联网运营为手段,搭建乡村经纪人网络,在政府与个人之间建立长期、互信的交互链路,实现动态的数据回流与政府服务的精准触达,帮助政 府提高公共就业服务效率,快速实现就业服务的规模扩张。
2)面向用工企业和蓝领为主的,互联网化运营的“人才快递”
公司于 2021 年收购金色华勤 51%股权,旗下“亲亲小保”是互联网运营思维下的就 业服务,主要面向用工企业和蓝领就业者。据公司年报,截至 2022 年底,APP 注册用户 数已达 300 多万,付费企业接近 2 万家,“人才快递”直播招聘业务已经联合 1000 多家 服务机构,覆盖 25 个省份。助力“用工企业-求职个人-政府机构”的数据打通,更好促进 就业市场。
3)数据产品上架,商业模式已经打通
四款数据产品成功上架两家数交所。据公司公告,公司基于长期数据能力沉淀,目前 已有四款数据产品上线福建数交所、贵阳数交所,是首批签约入驻福建大数据交易所的 15 家数据经纪人之一,目前数据产品主要包括“城市就业分析”、“个人职业背景调查”、 “失业保险业务核验”、“养老保险业务核验”。
数据底层能力已经具备,政策指导下未来空间更为广阔。公司现阶段已经完成底层数 据能力积累,在现有可行商业模式中,打造了完成的数据产品,以个人职业背景调查产品 为例:
以本地户籍数据、外来人口数据、人社就业数据、公安违法违规数据及社会数据等为 支撑,可按照委托方及应聘候选人提供的基础信息,通过专业调查流程、算法逻辑形成背 调报告。本产品向获得当事人授权的单位或个人提供查看权限,以精准匹配、降低招聘风 险为目的,应用于人力资源公司职业背景调查,招聘单位的员工入职尽调;或为企业对在 职高管及员工、进行定期职业风险评估提供参考。
图 15:公司数据产品商业模式已经完整
公司已经具备数据交易核心能力,短期内可以将能力提供给政府侧,未来有望成为“卖 铲子的人”,将处理方式工具化,帮助政府卖由数据生成的产品,实现数据资源价值最大 化。未来随着数据交易的进一步规范化,公司通过已经具备细分领域处理的优势,民生领 域资源禀赋突出,将充分受益。
5、风险偏好判断以及重点标的
5.1 风险偏好判断
增加“核心配置栏目”的原因:2019-2023 年计算机可能 PE 波动大,研究风险偏好 很重要。风险偏好判断更加重要。下图是说明。
2021 年第一次机会:年初开始。
2021 年第二次机会:预计 5 月底达到计算机风险偏好低点,开始上行。
2022 年第一次机会:4-5 月风险偏好筑底,6 月初进入“黄色区域”
2022 年 10 底分软件、嵌入式软件分别绘制,因为已经有差别。
2023 年由于主线弹性、领军公司都有机会,下属标的按照赛道重新划分。
2022 年 8 月底,出现白马连续调整,计算机低配置+低关注,且较多投资人看继续调 整,这样一般是投资机会底部区域。预计表现约两年。
图 16:软件当前的风险偏好 图 图 17:嵌入式软件当前的风险偏好
5.2 数字经济领军
德赛西威+恒生电子+英方软件 +中控技术(也是 AI)+启明星辰+大华股份等+广联达(也是 AIGC)+ 赛意信息+ 科大讯飞
5.3 AIGC 算力
中科曙光+浪潮信息+寒武纪+海光信息等
5.4 AIGC&数据弹性,2023 年
拓尔思+汉得信息(与鼎捷泛微类似,OA ERP AIGC 近期催化)+润达医疗(申 万医药等)+虹软科技(受益于 SAM 模型)+福昕软件(AIGC 新成长)+萤石网 络+ 星环科技+新国都+万兴科技 +金山办公+广电运通+上海钢联+ 深桑达+ 久远银海。
5.5 信创弹性,2023 年
纳思达+软通动力+太极股份+深信服+深桑达+中国软件+海量数据
5.6 港股核心
中国民航信息网络(H,提前)、明源云(H,年报经营出色,估值弹性)、金蝶国 际(H,弹性最大的云之一)、中国软件国际(H,发布深度)。
5.7 智联汽车
德赛西威、中科创达、经纬恒润。
5.8 医疗信息化(宏观弱相关,但估值偏高)
卫宁健康、创业慧康、久远银海、和仁科技等。
6、风险
由于复工环境等扰动,2022-2023 年内存在业绩波动风险。
计算机行业一向的风险依然是研究竞争、产业链地位与管理。若难以相对准确地把握, 可能会选中了次好的公司,对投资产生不良的结果。
此外,我们预测 2021-2022H1 涨薪扩人高峰后,2022H2-2023 年会“适应性调节” 成本扩张缓和。如果企业主依然选择长期激进扩张,会影响行业年度盈利和增长。
如果外部物流环境长期不佳,或影响短期季度的同比增速,递延翻转结论。
表 3:计算机估值简表(单位:亿元,元)