-
链表
-
树
-
数组
-
双指针
-
二分
-
-
贪心
-
动态规划
-
背包
-
其他DP
-
-
队列
-
栈
-
搜索
数组
- 双指针
- NC247 最接近的三数之和
-
思路:三数之和如果按照o(n^3)遍历肯定会爆,所以需要将复杂度降低到o(n^2),问题就来到了如何能完全枚举所有可能性结果呢;双指针(当value>target时,此时说明此处三数之和已经大于target,后面不需要进行遍历,故,先将nums进行排序之后进行双指针) int ClosestSum(vector<int>& nums, int target) { sort(nums.begin(), nums.end()); int min_value = INT_MAX; int res = 0; for (int i = 0; i < nums.size() - 2; i++) { int left = i + 1, right = nums.size() - 1; while (left < right) { int value = nums[i] + nums[left] + nums[right]; if (abs(value - target) < min_value) { res = value; min_value = abs(value - target); } //次处不需要接else: 上述最接近3数之和处不知道是大于target还是小于target,所以不能直接进行left++或者right--操作; [-10,20,10,40], target=20 if (value > target) { right -= 1; } else { left += 1; } } } return res; }
- NC251 多数组第K小数
-
//思路:双指针,由于2个数组都是有序的,故只需要二分判断即可; int findKthNum(vector<int>& arr1, vector<int>& arr2, int target) { // write code here int arr1_left = 0, arr1_right = arr1.size() - 1; int arr2_left = 0, arr2_right = arr2.size() - 1; int arr1_idx = 0; int arr2_idx = 0; while (target != 1) { // 取出一半元素的idx索引(索引需要-1) int k = target / 2 - 1; // 索引位置不能超出数组的长度,故去min arr1_idx = min(arr1_left + k, arr1_right); arr2_idx = min(arr2_left + k, arr2_right); // 判断2个数组索引位置大小,如果小值的话,肯定不是需要的结果; if (arr1[arr1_idx] < arr2[arr2_idx]) { target = target - (arr1_idx - arr1_left + 1); arr1_left = arr1_idx + 1; } else { target = target - (arr2_idx - arr2_left + 1); arr2_left = arr2_idx + 1; } // 必须是大于,由于你上面target已经去掉了不可能答案,所以,剩下的数组一定满足答案; // 如果是==的话,由于你上面加1,导致你idx已经到最后一个位置,直接返回的话就有问题; if (arr1_left > arr1_right) { return arr2[arr2_left + target - 1]; } if (arr2_left > arr2_right) { return arr1[arr1_left + target - 1]; } } return min(arr1[arr1_left], arr2[arr2_left]); }
- NC286 调整数组顺序使奇数位于偶数的前面
-
vector<int> reOrderArrayTwo(vector<int>& array) { // write code here int left = 0, right = array.size() - 1; while (left < right) { while (left < right && array[left] % 2 == 1) { left += 1; } while (left < right && array[right] % 2 == 0) { right -= 1; } if (left < right) { swap(array[left], array[right]); left += 1; right -= 1; } } return array; }