深度学习
文章平均质量分 61
笨笨小菜
这个作者很懒,什么都没留下…
展开
-
Real-time Personalization using Embeddings for SearchRanking at Airbnb
创新点:1.Real-time Personalization: 以前工作是user-item、item-item embeding;改进工作:在线用户交互item2.Adapting Training for Congregated Search:加入负例,做成pairwise3.Leveraging Conversions as Global Context:booking为最终目标4.User Type Embeddings:相同类型user生成same embedding5...原创 2021-07-11 22:12:57 · 139 阅读 · 0 评论 -
lstm
lstm是从网上找到的两篇blog看到的,仅供参考学习。其中每一处的操作都是模型自动学习操作,模型训练时间较长。同时双向lstm就是从前到后、从后到前分别生成一个lstm,进行cat相连接就可以参考文献:https://zhuanlan.zhihu.com/p/97815919lstm具体流程图https://www.jianshu.com/p/4b4701beba92lstm简介以及变种...原创 2021-03-15 19:12:17 · 89 阅读 · 0 评论 -
循环神经网络
参考文献:https://www.jianshu.com/p/b38760250281原创 2021-03-15 17:45:45 · 77 阅读 · 0 评论 -
利用rnn进行irris分类
import numpy as npfrom random import shuffleimport tensorflow as tftrain_path = 'C:/Users/user/Documents/irris_train.txt'test_path = 'C:/Users/user/Documents/irris_test.txt'logs_path = 'C:/Users...原创 2018-06-02 14:44:03 · 1397 阅读 · 3 评论 -
tensorflow实现卷积神经网络
本文是在参考文献2的基础上进行扩展和改进的,并将代码进行注释,方便学习。并将每层的size进行简要注释参数设定N_CLASSES = 5IMG_W = 208IMG_H = 208BATCH_SIZE = 8CAPACITY = 64MAX_STEP = 200learning_rate = 0.0001(1)获取数据def get_files(file_dir): A5 = [] ...原创 2018-05-23 16:47:02 · 424 阅读 · 0 评论 -
前馈神经网络权值更新案例
本章的主要目的是在于用tensorflow实现一个简单的神经网络算法。 下图是一个简单的前馈神经网络图,改图中有3层结构,第一层为输入层,第二层为隐藏层,第三层则为输出层,图中的W1,……,W9为连接边的权值。下图展示如何进行神经网络的前向传播计算。1.前向传播计算的手动计算及矩阵表示以及Tensorflow计算代码(1)计算输入层-->隐藏层的权重a11 = W1 * X1 ...原创 2018-05-07 23:12:26 · 7012 阅读 · 4 评论 -
tensorflow常用函数
Tensorflow的名字中包含两个概念-tensor和flow。Tensor是张量的意思,在tensorflow中可以被简单的理解为数组。Flow就是张量之间通过计算相互转化的过程。分别介绍tensorflow的计算模型、数据模型和运行模型。1.计算模型 Tensorflow是一个通过计算图的形式啦表述计算的编程系统,Tensorflow将所有的计算转化为计算图,图...原创 2018-05-07 17:28:08 · 412 阅读 · 0 评论 -
激活函数
激活函数是用来解决线性不可分问题的一个方法,常用来svm以及神经网络中。常见的激活函数有sigmoid函数、tanh函数、softmax函数以及ReLU函数,上述方法都可以作为隐层神经元的输出。1.sigmoid函数导数为:图像及导数图像:图像结果在(0,1)之间,激活函数计算量大,反向传播求误差梯度时,会出现除法;并且在深层次网络中容易产生梯度消失问题(当梯度小于1时,预测值与真实值之间的误差每...原创 2018-05-20 11:22:35 · 958 阅读 · 0 评论 -
卷积神经网络
卷积神经网络也是一种前馈神经网络,是一种专门用来处理具有类似网格结构的数据的神经网络。例如,时间序列数据和图像数据。该神经网络使用了卷积数学运算,是一种特殊的线性运算。卷积神经网络的稀疏交互、参数共享及等变表示等特性使之可以有效地降低网络的复杂度,减少训练参数的数目,使模型对平移、扭曲、缩放具有一定程度的不变性,并具有强鲁棒性和容错能力,且也易于训练和优化网络结构。 下...原创 2018-05-06 16:24:04 · 8108 阅读 · 0 评论 -
梯度下降法
梯度下降法的定义就是从百科上拿下来的,梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数...原创 2018-04-20 13:01:48 · 1521 阅读 · 0 评论