Outline
•基本认识
•最短路模型
•动态规划
•一对多最短路问题:Bellman-Fordalgorithm
•多对多最短路问题:Floyd-Warshallalgorithm
•一对多无负权最短路问题:Dijkstraalgorithm
•一对多无环图最短路问题
•离散动态规划
•利用动态规划解决整数规划问题
-------------------
基本认识
•运筹学建模时需要权衡模型的普适性与复杂性。一般来说,一个模型针对性越强,包含的假设越多,对该模型的分析也就越丰富有效。
••最短路模型,就是一类针对性极强的优化模型。
•由于这类问题具有极强的针对性,这类问题是所有优化问题中最能被有效求解的。
•无论是城市交通、大学走廊、卫星通信,还是芯片的表面设计,找到最短路径都具有现实意义。
•动态规划算法将我们关注的问题分解成一系列与其紧密相关的优化子问题予以解决。
•当模型的结构满足一些特定条件时,我们就可能找到子问题的最优解与母问题的最优解之间存在的关系,进而利用这种关系去找到一个能有效解决母问题的算法。
---------------------------------