什么是分库分表
分库分表是指将原本存储在单一数据库中的数据,拆分到多个数据库或者多个数据表中。这样做的目的是为了提高数据库的扩展性和性能,解决单一数据库在数据量和并发访问上的瓶颈。
为什么需要分库分表
- 首先,随着业务的发展,数据量不断增长,单一数据库的存储容量可能无法满足需求。此时,通过分库可以将数据分散到多个数据库中,提高整个系统的存储能力。
- 其次,高并发访问也需要考虑的问题。当访问量过大时,单一数据库可能无法处理这么多的并发请求。通过分表,可以将数据按照某种规则拆分到多个表中,实现并发请求的均衡分配,提高系统的并发处理能力。
水平切分
水平切分,也称为Sharding,是一种将数据按照一定规则分散到多个数据库实例或表中的技术。水平分库是指将数据分散到不同的数据库实例上,而水平分表则是将数据分散到同一个数据库中的不同表中。
通过水平分库,可以将数据分流到多个数据库实例上,实现数据的分散存储和负载均衡。这对于单个表的数据量过大,导致查询和写入性能下降的情况非常有帮助。通过水平分库,可以将数据均匀地存储在多个数据库实例中,从而提高系统的整体性能和可扩展性。
垂直切分
垂直分库是一种按照业务功能将数据分散到不同的数据库中的技术。通过将不同的业务功能独立存在于各个数据库中,可以实现业务之间的相互独立,减少数据库之间的关联和依赖。这样做可以提高系统的可维护性和扩展性,并且有助于降低数据库之间的耦合程度。
垂直分表是将单个表按照列的特性进行拆分的技术。通过根据业务功能或访问频率将表中的列进行划分,可以减少每个表的列数,从而提高查询性能和存储效率。垂直分表可以使得每个表的结构更加精简,只包含与特定业务相关的列,避免了不必要的数据冗余和查询开销。
支持分库分表的中间件
在实际应用中,我们可以借助一些中间件来实现分库分表的功能。比较常用的有ShardingSphere、MyCat、Vitess等。这些中间件可以对SQL进行解析和改写,将数据路由到正确的数据库或数据表中,隐藏了分库分表的细节,提供了方便的接口和管理工具。
分库分表遵循的原则
在进行分库分表时,有一些原则是需要遵循的。下面是我总结的一些原则,以电商项目为例:
- 根据业务场景切分。比如,将商品信息和订单信息划分到不同的数据库中。
- 避免跨库事务。比如,下单时需要同时操作商品库存和订单表,可以将商品库存信息冗余到订单表中,避免跨库事务的开销。
- 避免跨库Join操作。比如,在订单查询时,尽量避免多个表之间的Join操作,可以通过冗余数据或表分组来降低跨库Join的可能性。
- 合理划分数据范围。比如,按照商品ID的范围划分数据库,按照时间维度划分数据表。
- 合理选择分片键。分片键的选择很关键,需要根据数据的特点和查询模式进行选择,避免数据倾斜和热点问题。
- 合理规划索引。根据查询场景和数据分布规律,选择合适的索引策略,提高查询效率。
- 合理配置硬件资源。分库分表会增加系统的硬件资源消耗,需要根据实际情况进行合理配置,保证系统的性能和稳定性。
- 定期维护和监控。分库分表后需要定期进行维护和监控,及时发现和解决问题,确保系统的稳定运行。
- 灵活扩展和迁移。根据业务的发展,需要灵活地扩展和迁移数据库和数据表,保证系统的可扩展性。
- 备份和恢复策略。分库分表后,备份和恢复的策略也需要进行相应调整,确保数据的安全性和可靠性。
建议
- 能不切分尽量不要切分。分库分表会增加系统的复杂性和维护成本,只有在数据量和并发访问量达到一定程度时才考虑分库分表。
- 如果要切分一定要选择合适的切分规则,提前规划好。根据业务特点和需求,选择合适的切分规则,避免后期的调整和改动。
- 数据切分尽量通过数据冗余或者表分组来降低垮库Join的可能。避免频繁的跨库Join操作,可以通过冗余数据或者表分组的方式来降低跨库Join的可能性。
- 由于数据库中间件对数据Join实现的优劣难以把握,而且实现高性能难度极大,业务读取尽量少使用多表Join,最多三张表关联查询。减少多表Join操作的频率,可以提高系统的查询性能。
感谢大家读到这里,后续还会有其他相关文章,欢迎继续阅读。