给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
这种题目直接使用取负法可以很快解决,不过没有什么挑战性。后来想了一想,元素归位法对于这种空间复杂度O(1)的类型题目很多场合都能使用。
元素归位法的意思就是把第i号元素的值置为i(或者i+1)。我这里采用的是迭代的方式。先从0号开始,交换num[0]与nums[nums[0]-1]的值,即把nums[0]放到num[nums[0] -1]。为了方便,令x =num[nums[0] -1] ,然后再把x放到num[x -1]。以此类推。但是要注意一个问题,如果nums[i] == nums[nums[i] -1],会造成死循环,必须交换前验证一下是否相等。相等则把i++。
我这里用的while循环,循环变量是数组的坐标。i是依次访问的,所以访问到某个元素时,左边的元素肯定都是交换过了或者存在相等不必要交换的。等到循环结束,一定是所有变量都归位了。
class Solution {
public List<Integer> findDisappearedNumbers(int[] nums) {
int i = 0;
List<Integer> list =