第六章 定积分的应用 ---元素法:

本文探讨了如何使用定积分来计算特定量,重点介绍了元素法的概念和应用。通过选择适当的自变量和函数,将它们的乘积作为微元,从而求解体积和面积。内容包括定积分的几何意义、区间可分性和可加性,并通过极坐标面积的计算以及两个例题详细阐述了积分在求解图形面积中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

按定积分的定义所求量, \small U=\int_{a}^{b}f(x)dx

 

按照定义:第一要选取适当自变量 ,第二要确定一个函数,用他们的乘积作为  微元 

这些微分元素的和 就是所求量 , 求体积的时候,微分元素代表的是体积 ,求面积的时候,微分元素代表的是面积 ,但是归结到定积分的原始定义,它的几何意义始终都是 ,被积函数与自变量轴 以及积分区间端点 ,四条线构成的图像的面积 。 

 

元素法 ---- 是定义法的推广 ,即是被积函数不同,则代表的实际意义也就发生了变化 。  

 

=============================================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值