# POJ 2533 Longest Ordered Subsequence（最长非递减子序列，LIS）

Longest Ordered Subsequence
 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 50206 Accepted: 22293

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4


Source

Northeastern Europe 2002, Far-Eastern Subregion

AC CODE：

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
const int MM = 200100+4;
using namespace std;

int h[MM], d[MM], Ans[MM];

int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i++) cin >> h[i];

int ans = 0, vv = 0;
for(int i = 1; i <= n; i++)
{
d[i] = 1;
for(int j = 1; j <= i-1; j++)
{
if(h[j] < h[i] && d[i] < d[j]+1)
{
d[i] = d[j] + 1;
}

}
if(d[i] > ans) ans = d[i];
}

printf("%d\n", ans);
return 0;
}

04-25 1053

03-12 77

11-26 444

04-15 2275

08-28 6002

10-31 199

12-05 4136

08-28 198

03-24 813

02-26 200

#### Analytic Functions in Oracle

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。