堆排序主要分两个主要步骤:1、建立最大(最小)堆;2、调整堆。
文中主要给出算法,有详细注释,注意由于计算方便,该算法下表为0的数组不能进行排序。
package org.mino.sort;
/**
* 堆排序
* @author DingJie
*/
public class HeapSort {
public static void main(String[] args) {
// 数组0下标元素作为暂存单元
int []array = { 45, 12, 11, 32, 56, 11, 8, 30, 3 };
System.out.println("排序前:");
for (int i = 1; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println("");
heapSort(array);
System.out.println("排序后:");
for (int i = 1; i < array.length; i++) {
System.out.print(array[i] + " ");
}
}
/**
* 堆排序
* @param array
*/
public static void heapSort(int[] array) {
// 对数组进行筛选,建成一个大顶堆
double len = array.length - 1;
for (int i = (int) Math.floor(len / 2); i > 0; i--) { //第一个不排序
heapAdjust(array, i, array.length - 1);
}
System.out.println("排序中:");
for(int i = 1; i < array.length;i++) {
System.out.print(array[i] + " ");
}
System.out.println("");
for (int i = array.length - 1; i > 1; i--) {
// 将堆顶元素与最后一个元素调换位置,即输出最大值 ,也可输出第i大的值【逆序复制就行】
swap(array, 1, i);
// 将最后一位剔出,数组最大下标变为i-1。自队顶至叶子进行调整,形成一个新堆,此过程称为筛选
heapAdjust(array, 1, i - 1);
}
}
/**
* 建堆函数,认为【s,m】中只有 s
* 对应的关键字未满足大顶堆定义,通过调整使【s,m】成为大顶堆
* @param array
* @param s
* @param m
*/
public static void heapAdjust(int[] array, int s, int m) {
// 用0下标元素作为暂存单元
array[0] = array[s];
// 沿孩子较大的结点向下筛选
for (int j = 2 * s; j <= m; j *= 2) { //*=2递归查看孩子
// 保证j为较大孩子结点的下标,j < m 保证 j+1 <= m ,不越界
if (j < m && array[j] < array[j + 1]) { //选出最大的一个
j++;
}
if (!(array[0] < array[j])) { //已经是最大堆不需要递归
break;
}
// 若S位较小,应将较大孩子上移
array[s] = array[j];
// 较大孩子的值变成S位的较小值,可能引起顶堆的不平衡,故对其所在的堆进行筛选
s = j; //S指向刚上移的元素位置
}//end_for
// 若S位较大,则值不变;否则,S位向下移动至2*s、4*s、。。。
array[s] = array[0];
}
/**
* 交换函数
* @param array
* @param i
* @param j
*/
public static void swap(int[] array, int i, int j) {
int temp;
temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}