1. 汉诺塔问题是什么
汉诺塔问题简单来说就是有三根柱子,其中一根柱子从上到下按照由小到大的顺序放着N个盘子,现在需要将这N个盘子放置到另一根柱子上且盘子的顺序不变,且在调换位置时,盘子始终按照由上到下从小到大的顺序摆放,那么调换完成至少需要多少步。
2. 汉诺塔问题解决思路剖析
我们先从两个盘子开始,如下图,需要将两个盘子从柱子1移动到柱子3,我们只需要将柱子1上面的小盘子移动到柱子2上,然后把柱子1剩下的大盘子移动到柱子3上,最后将小盘子再移动到大盘子上,即可完成。
也许到这里我们还没有发现什么规律,那么我们考虑三个盘子,如下图。三个盘子可以理解为两个盘子的基础上来了个更大的盘子,那么将这三个盘子从柱子1移动到柱子3且从上到下顺序不变,我们就可以分为三步走:(1)移动上面的两个盘子到柱子2上;(2)移动最底部的盘子到柱子3上;(3)将柱子2上的盘子移动到柱子3上(在移动的过程中,柱子上的盘子始终按照从上到下由小到大摆放)。
经过上述分析得到,当移动N个盘子的时候,我们也可以分为3步:(1)将第N个盘子上面的N-1个盘子移动到柱子2上;(2)将第N个盘子移动到柱子3上;(3)将柱子2上的N-1个盘子移动到柱子3上。我们会发现完成步骤1与完成步骤3至少需要的移动次数是相等的,而完成步骤1与将柱子1上只有N-1个盘子移动到柱子3上的移动次数相同,那么假设柱子1上只有N-1个盘子,将其全部移动到柱子3上至少需要f(n-1)步,当柱子1上有N个盘子时,将其移动到柱子3上至少需要的步骤满足f(n)=2* f(n-1)+1,观察表达式,我们就很容易地想到函数递归可以很好的计算出结果。
3. 代码实现
通过对汉诺塔问题的剖析