视频链接:http://bit.baidu.com/Course/detail/id/288.html
讲师:夏添 Apollo主任架构师
传感器选择与标定
主要传感器
- Lidar:原理是TOF,time of flight,主动式感知,测距准,缺点是稀疏性(百度apollo用的是64线的Lidar,但是依然很稀疏,百米外的物体只能有一两条线扫描到),很难做模式识别,受功率限制,距离有限,大概在60~70米的极限。
- 相机:被动式感知,依赖于环境状态,在夜间和恶劣环境下会牺牲准确度,信息稠密,适合做识别,距离远,取决于像素,通常在几百米内都能有效识别,测距不准。
- 毫米波雷达:主动式感知,感知距离近,精度高,具有多普勒效应,可以用来分辨周围车辆的状态,缺点是噪点较多,需滤波,对非金属物体的探测能力差(反射率低),信息也相对稠密。
- 超声波传感器:与雷达有同样的问题,针对非金属物体的探测能力一般,测距比较粗糙,只适合在低速下的感知,优点可能就是成本低。
- 高精地图:老师一直把高精地图作为感知的一个输入,因为现在的无人驾驶还非常依赖于高精地图,这是感知很重要的一个先验知识,先验知识可以降低预测的误差,精度高,问题就是过分依赖于高精地图会限制无人驾驶的应用场景的灵活性。
- Image-Lidar:一种结合camera和lidar的传感器,我理解的大概是把相机装到可旋转云台上,通过双目或红外来测距,因为在旋转测距的同时,能够得到同频率的图像信息,所以信息量是稠密的,同时还是全覆盖信息获取,同时兼顾了准确测距,所以成为一个研究方向,我感觉测距上应该类似于RGBD相机的原理。这个传感器还在研发中,所以成本比较高。
安装
apollo无人车依赖于车厂,需要和汽车厂商合作,得到车辆的CAD模型,然后在模型上加各种传感器。
需要考虑很多因素:
- 遮挡:避免传感器被车辆遮挡,所以想Lidar这种,就只能是放到车顶;
- 传感器融合:需要设计所有传感器的一个overline,配合传感器融合技术;
- 每个sensor的角度和距离需要设计好;
- 稳定性:不要影响车辆的力学稳定性;
- 安全性:不要影响车辆的外形安全性(比如碰撞后掉落);
- 风阻:不要影响车辆的行驶性能;
- 美观:车厂比较看重;
- 便于清理,保护,尤其是外置的传感器。
标定
标定的主要工作就是检查传感器本身的参数,以及校对多个传感器的相对位置。
前者叫做传感器内参标定,后者叫外参标定。
- 内参标定比如说相机的焦距,Lidar的激光管角度等,这些参数本身会在传感器厂商提供的手册中写明,但由于加工工艺、损耗等原因,不一定完全准确,所以需要人工检查标定;
- 外参标定就是标定传感器之间的相对坐标系和朝向,比如camera对camera、camera对lidar、lidar对lidar、camera对radar、lidar对gps这些。
标定环境有两种,分别是在标定间中标定,或者在自然场景下标定,使用标定间成本相对高,因为需要准备一个标定间,在自然场景下标定又依赖于算法,对算法要求高。
camera标定中用到的一个叫解PNP问题,PNP问题是一个解决单目相机位姿的很常见的算法。
Lidar标定中用到的一个叫解ICP问题,ICP问题是一种点云匹配算法。
最终标定结果需要通过可视化的方法来判断是否标定准确,比如把两个camera的成像叠加显示,或者将camera和lidar的成像和点云叠加,看锐利边缘的物体是否清晰。
准确标定对后续的算法有着直接的影响,所以标定是个细致活,不得马虎。