简述
分割图一直是图像识别的热门研究方向,主要完成的任务就是把图中某部分有意义的物体影像抠出来。比入在X光或CT透视中将某些特定的组织抠出来啥的。
主要原理
将图像映射为带权无向图, 把像素视作节点, 利用最小剪切准则得到图像的最佳分割。本质上将图像分割问题转化为最优化问题,。这个也可以看成类聚问题,对图中点的类聚,解决方法对数据类聚也有不错的应用前景。但现在KNN和K-means类聚已经比较完善了。令G= (V, E) 表示一个无向图, 其中节点vi∈V表示图像像素, 边 (vi, vj) ∈E连接节点vi和vj.每条边有一个相应的非负权重w (vi, vj) , 表示相邻节点vi和vj的不相似度(比如灰度,颜色,运动状态),完了问题就转化为找到一种边权和比较大的割边方案。
具体方法
首先对图用图论的算法粗分割(递归最短生成树),完了在对分的小块整合,成为有意义的物体影像,根据实际的物体边长,灰度差值,亮度,还有平滑程度等。然后对脊柱侧凸前路松解融合椎间盘切除术中采集的胸腔镜图分析表明这个算法能成功找到人体空腔。
参考文献
Bilodeau G A, et al.Computerized medical imaging andgraphics[J].Computerized Medical Imaging and Graphics,2006,30(7):437-446.